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Abstract

An unprecedented number of pathogenic fungi are emerging and causing disease in
animals and plants, putting the resilience of wild and managed ecosystems in jeopardy.
While the past decades have seen an increase in the number of pathogenic fungi, they
have also seen the birth of new big data technologies and analytical approaches to
tackle these emerging pathogens. We review how the linked fields of genomics and
epigenomics are transforming our ability to address the challenge of emerging fungal
pathogens. We explore the methodologies and bioinformatic toolkits that currently
exist to rapidly analyze the genomes of unknown fungi, then discuss how these data
can be used to address key questions that shed light on their epidemiology. We show
how genomic approaches are leading a revolution into our understanding of emerging
fungal diseases and speculate on future approaches that will transform our ability to
tackle this increasingly important class of emerging pathogens.
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1. INTRODUCTION

The fungal kingdom, diverged from the animal and plant kingdoms

around 1.5 million years ago (Wang, Kumar, & Hedges, 1999), is globally

ubiquitous and taxonomically diverse with between 1.5 and 5 million spe-

cies estimated to exist (Blackwell, 2011). Recent phylogenetic classifications

(Hibbett et al., 2007; Spatafora et al., 2016) currently group fungi into eight

separate phyla, with the zoosporic fungi (Cryptomycota, Chytridiomycota,

and Blastocladiomycota) comprising the earliest lineages alongside the

Microsporidia. The four remaining phyla include the Zoopagomycota,

Mucoromycota, and the “Dikarya higher fungi,” comprising the phylum

Ascomycota and Basidiomycota. Spanning the breadth of the fungal king-

dom are pathogenic fungi that infect animals, plants, and other fungi. Impor-

tantly, increasing numbers of fungi are emerging as aetiological agents of

disease by either exhibiting newly acquired or increased pathogenicity, or

invading new ecological niches (geographically or to new host species),

or both (Cushion & Stringer, 2010; Fisher, Gow, & Gurr, 2016; Longo,

Burrowes, & Zamudio, 2014).

Emerging fungal pathogens (EFPs) are infections that are rapidly increas-

ing in their incidence, geographic or host range, and virulence (Morse,

1995). This class of pathogens are known to pose an increasing threat to

the health of plants, humans, and other animals (Fisher et al., 2012;

Fones, Fisher, & Gurr, 2017). Recently highlighted examples include the

newly described chytrid fungus Batrachochytrium salamandrivorans causing

rapid declines of fire salamanders across an expanding region of northern

Europe (Martel et al., 2014; Stegen et al., 2017), the basidiomycete fungus

Puccinia graminis f. sp. tritici (Ug99 race) now threatening wheat production

and food security worldwide (Singh et al., 2011), the basidiomycete fungus

Cryptococcus gattii expanding its range into nonendemic environments with a

consequential increase of fatal disease in humans (Byrnes et al., 2010; Fraser

et al., 2005), and the emergence of Candida auris in intensive care units

worldwide (Chowdhary, Sharma, & Meis, 2017). The global threat of these

and other related diseases is underpinned by fungi harboring complex,

recombinogenic and dynamic genomes (Farrer, Henk, Garner, et al.,

2013; Fisher et al., 2012). Genomic variability drives rapid macroevolution-

ary change that can overcome host defenses and allow colonization of new

environments. Novel genetic diversity also leads to the genesis of new inde-

pendently evolving pathogenic lineages. Consequently, there is a clear and
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urgent need to understand the mechanisms that drive the evolution of the

phenotypic traits that underlie the virulence, pathogenicity, and geo-

graphic/host spread of EFPs.

EFPs of wildlife are generally detected following the observation of (ini-

tially “enigmatic”) mass mortalities and species declines. For instance, pop-

ulation monitoring by ecologists led to the discovery of panzootic

chytridiomycosis caused by novel species of Batrachochytrium, and bat

white-nose syndrome caused by the novel species Pseudogymnoascus des-

tructans (Blehert et al., 2009). In contrast, ongoing surveillance and

genotyping of crop pathogens are used to detect and map the spread of phy-

topathogenic fungi and their lineages as they spread via trade and transpor-

tation, such as recently occurred with the spatial emergence of wheat blast

Magnaporthe oryzae in Bangladesh (Islam et al., 2016). Crucially, in both ani-

mal and plant systems, rapid genome sequencing is essential to gain a greater

understanding of the taxonomy, epidemiology, and evolutionary biology of

EFPs and to inform possible mitigation efforts. A growing body of evidence

is also meanwhile accumulating to show that epigenenomic processes (such

as differential expression (Kuo et al., 2010), nucleosome positioning (Leach

et al., 2016), and nucleic acid modifications (Jeon et al., 2015)), alongside

genomic processes, influence both host and pathogen phenotypes. For

example, in the aggressive phytopathogen Botrytis cinerea, small RNAs

invade host cells and silence host immunity by hijacking the host RNA

interference (RNAi) machinery leading to a virulent host/pathogen inter-

action (Weiberg et al., 2013). In this review, we discuss the experimental

methodologies, and the discoveries they have enabled, that use genome var-

iation within and between populations of EFPs, with a focus on future

threats and the genomic resources that are needed to tackle them. Addition-

ally, we discuss the methods and results emerging from experiments charac-

terizing epigenomic variation within and between populations of EFPs, and

show how this emerging field will contribute to a more nuanced under-

standing of the epidemiology of these infections. The toolkits and method-

ologies that we cover in this review are summarized in Fig. 1.

2. CHARACTERIZING GENOME VARIATION WITHIN AND
BETWEEN POPULATIONS OF EFPS

Genome variation ultimately manifests, postsequencing, through the

use of bioinformatics, where two or more individuals have subsections of

their DNA aligned and compared, revealing single base changes (indicative
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of point mutations in one or more of the individuals), insertions and dele-

tions (indels), and recombination (shuffling of sequences within and

between genomes). Longer alignments and sequencing many times over

(such as is often the case with next-generation and third-generation

sequencing platforms) are required to identify additional features of genome

variation. For example, changes in the depth of sequencing can suggest loss

or gain of copy number variation (CNV) for single genes (gene duplication),

regions (segmental aneuploidies), or entire chromosomal CNV (chromo-

somal aneuploidy; Fig. 2B) (Farrer, Henk, Garner, et al., 2013). Other

EFP

Species
hypotheses

Reference 
genome

No reference 
genome

Whole-genome sequencing
Short reads: Illumina

Long reads: PacBio/MinION

De novo genome 
assembly (Table 1)

RNA sequencing:
Transcriptome, ncRNA, 

miRNA

Genome annotation, functional 
prediction, genome architecture

Alignment to reference and 
variant calling

Interlineage comparisons: 
Synteny, genome architecture, lineage-specific 

expansions/contractions, horizontal gene 
transfer, phylogenetic analysis

Phylogenomics:
Defining evolutionary units 

using GCPSR

Population genomics:
Scans for selection and functional 
mutations, molecular epidemiology

GWAS and QTL mapping:
Association of variants with clinically relevant 

phenotypes 

Epigenomics:
Epigenetic variation, cross-kingdom 

RNA interference

Fig. 1 A generalized workflow detailing the use of genomics to understand the genetic
basis that underpins a novel EFP. Images: midwife toads with fatal chytridiomycosis cau-
sed by Batrachochytrium dendrobatidis (M.C. Fisher) and burning of a severely wheat
blast (Magnaporthe oryzae Triticum) affected field in Meherpur district in Bangladesh,
February 2016 (T. Islam, BSMR Agricultural University, Bangladesh).
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Fig. 2 Examples of genomic features that can be detected in EFPs. (A) Synteny and
genomic rearrangements between and within two lineages of C. gattii (Farrer et al.,
2015), (B) chromosomal copy number variation (CCNV) in B. dendrobatidis detected
by average read depth from alignments (top) and allele frequencies (percent of bases
agreeing with reference base vs tally in kilobases) (Farrer et al., 2011), (C) loss of hetero-
zygosity in B. dendrobatidis detected using nonoverlapping sliding windows of SNPs
minus heterozygous positions (red, predominately SNPs; blue, predominately heterozy-
gous) (Farrer et al., 2011), (D) gene family expansion in Batrachochytrium spp. (Farrer
et al., 2017), (E) gene annotation counts of gene types, and functional computes in Bat-
rachochytrium spp. (Farrer et al., 2017), (F) measures of selection (i.e., dN/dS) across sub-
clades of C. gattii using only fixed differences compared to VGIIa (Farrer et al., 2015).
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examples include subsections of DNA that are reoriented to one another

(inversions), subsections of DNA that occur in different locations in two

individual genomes (translocations; Fig. 2A), genetic mosaics of two species

in a single isolate (hybridizations) (Rhodes, Desjardins, et al., 2017), reduc-

tion of heterozygosity (gene conversion or loss of heterozygosity; Fig. 2C)

(Farrer, Henk, Garner, et al., 2013), and changes to the ordering of genes

(synteny). From these sources of genomic variation in fungal pathogens, epi-

demiological features of the outbreak can be inferred, virulence factors iden-

tified, and diagnostics and treatments devised.

Each source of genomic variation has unique and cumulative sources of

uncertainty. These variants require careful detection and minimization,

where possible. First, the quality of the sequence data can be highly variable

between experiments, library-building protocols and different sequencing

machines, containing low-throughput/depth sequencing, high levels of

error in the base calls, or unexpected laboratory contamination (such as bac-

terial or host DNA). Uncontaminated high-quality samples may then be

aligned to distantly related genomes resulting in decreasing accuracy of

alignments and base calling. The quality of reference genomes themselves

is variable, and they may contain inaccurate reference sequences (mis-

assembled or containing sources of the prementioned errors), which can

result in misleading comparisons. Second, variant calling from alignments

against reference sequences may contain mistaken assumptions about ploidy,

or inaccurately called bases. Alternatively, sequenced reads can be assembled

into longer contiguous sections of chromosomes, which themselves can

contain inaccurately assembled contigs or scaffolds. These are especially

prone to occur over repetitive content or sequencing errors. From these

assemblies, gene calling is often performed, which itself may include mis-

takes in intron/exon boundaries, and often absent or partial 50 and/or 30

untranslated regions (UTRs), for example. From comparisons of these gene

predictions, analysis of patterns of natural selection could potentially identify

unusually evolving genes that are artefacts caused by the aforementioned

sources of errors. Fortunately, each of these errors has a range of hallmarks

and remedial bioinformatics processes that can be used to ensure their accu-

racy or minimize those sources of error.

In the following sections, we will discuss the methods for identifying dif-

ferent sources of genomic variation with a focus on EFPs, and the manifes-

tation of this variation within populations (population genetics approaches),

and between populations (comparative genomics approaches). Importantly,

we will be distinguishing between subgenomic approaches (PCR finger-

printing, microsatellites, restriction fragment length polymorphisms, etc.)
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and whole-genomic approaches, focusing entirely on the latter. While sub-

genomic approaches are undoubtedly useful for characterizing EFPs (e.g.,

Hsueh et al., 2000; Mohammadi et al., 2015), approaches that are based

on using whole genomes are increasingly being used for the detection

and rapid characterization of novel pathogens (Hasman et al., 2014;

Lecuit & Eloit, 2014). Indeed, beyond the identification of either a known

or unknown fungus, the usage of full genome data provides far greater

insights into the pathogens evolutionary history, population structure, and

repertoire of virulence effectors.

2.1 Assemblies, Alignments, and Annotation
Many EFPs will be initially classified or identified based on their morpho-

logical traits, or host species, such as occurred with the amphibian-infecting

chytrids Batrachochytrium dendrobatidis and B. salamandrivorans (Berger et al.,

1998; Martel et al., 2013). Initially, subgenomic approaches using a taxo-

nomic marker gene such as analysis of ribosomal DNA (rDNA) (Schoch

et al., 2012) against global databases of known fungal sequences such as

UNITE (Kõljalg et al., 2013) or the Ribosomal Database Project (RDP;

Cole et al., 2014) are needed to define operational taxonomic units

(OTUs). OTUs (also called “species hypotheses”) are proxies for classically

defined species and are used to ordinate the novel EFP taxonomically in the

kingdom Fungi—bearing in mind however that the Microsporidia do not

have the canonical rDNA structure (Dong, Shen, Xu, & Zhu, 2010). Sub-

sequently, genome assembly (assembly de novo) is needed to provide a thor-

ough examination of its genetic makeup and relatedness to known species.

Ideally, assembling a genome de novo will be preplanned, by

implementing a long-read technology (such as third-generation sequencing

platforms Oxford Nanopore’s MinION, or Pacific Biosciences’ single mol-

ecule real-time sequencing). Alternatively, multiple sequenced paired-end

libraries of Illumina with short- and long (also known as “jump”) insert sizes

can be used by assembly tools optimized for such datasets (such as Allpaths;

Butler et al., 2008). Other options for generating a high-quality assembly are

the use of Fosmid libraries (fragmenting the genome then cloning into

E. coli, and sequencing individual libraries separately) or constructing an

optical map (a high-resolution restriction map of the genome to aid in

assembling subsections of the genome).

Many assembly tools have been developed (Table 1), whichmay be opti-

mized for different sequencing technologies (e.g., Allpaths for two libraries

of paired-end Illumina (Butler et al., 2008), Canu for long reads such as
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Table 1 Names, Versions and Descriptions of Popular Genomic Tools Used for Assembly
de novo, Pairwise and Multiple Alignment, Gene Annotation and Variant Calling in EFPs
Purpose Tool Current

Version
Input/Notes Citations

Assembly

ALLPATHS-LG v4.7

Two Illumina

fragment (paired-

end) libraries

Gnerre et al.

(2011)

Canu v1.4

overlapping for

noisy, long reads

such as MinION or

PacBio

Koren et al.

(2017)

DISCOVAR de

novo
N/A

Single Illumina

fragment (paired-

end) library

Love,

Weisenfeld,

Jaffe, Besansky,

and Neafsey

(2016)

Platanus v1.2.4

De novo assembly of

highly heterozygous

genomes

Kajitani et al.

(2014)

SGA N/A

Memory efficient

tool for large

genomes

Simpson and

Durbin (2012)

SOAPdenovo v2

One or more single

and/or paired-end

libraries

Li et al. (2010)

SPAdes v3.5

Single-cell and

standard (multicell)

libraries, haploid or

diploid

Bankevich et al.

(2012)

Trinity v2.3.2

RNAseq data

(optionally genome

guided)

Haas et al.

(2013)

Alignment

BLAST Blast+
Fast searches against

large databases

Altschul, Gish,

Miller, Myers,

and Lipman

(1990)

BLAT N/A

Fast searches and

connects

homologous hits

Kent (2002)

Bowtie v2.3.0

Supports gapped,

local, and paired-end

alignment modes

Langmead and

Salzberg (2012)
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Table 1 Names, Versions and Descriptions of Popular Genomic Tools Used for Assembly
de novo, Pairwise and Multiple Alignment, Gene Annotation and Variant Calling in
EFPs—cont’d
Purpose Tool Current

Version
Input/Notes Citations

BWA-mem v0.7.15

Low-divergent

sequences against a

large reference

genome

Li and Durbin

(2010)

HISAT2 v2.0.5

DNA or RNA to a

population of

genomes

Pertea, Kim,

Pertea, Leek,

and Salzberg

(2016)

MAFFT v7

High speed multiple

sequence alignment

program

Katoh and

Standley (2013)

MAVID v2.0.4

Multiple alignment

program for large

genomic sequences

Dewey (2007)

MUMmer v3.22
Aligns entire

genomes

Kurtz et al.

(2004)

MUSCLE v3.8.31
Multiple sequence

alignment
Edgar (2004a)

STAR v2.5

Spliced transcripts

(RNAseq) to a

reference

Dobin et al.

(2013)

TBA MULTIZ 12109

Aligns highly

rearranged or

incompletely

sequenced genomes

Blanchette et al.

(2004)

Annotation

Augustus v2.5.5

Ab initio gene-

prediction program

for eukaryotes

Stanke et al.

(2006)

EVM v1.1.1

Combines diverse

evidence types into

single gene structures

Haas et al.

(2008)

FGENESH v2.1

HMM-based

ab initio gene-

prediction program

Salamov and

Solovyev (2000)

GeneID v1.4.4

Predicts genes in

anonymous genomic

sequences

Blanco, Parra,

and Guigó

(2007)

Continued
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Table 1 Names, Versions and Descriptions of Popular Genomic Tools Used for Assembly
de novo, Pairwise and Multiple Alignment, Gene Annotation and Variant Calling in
EFPs—cont’d
Purpose Tool Current

Version
Input/Notes Citations

GenemarkHmmEs v2.3

Unsupervised

training for

identifying

eukaryotic protein-

coding genes

Lukashin and

Borodovsky

(1998)

GlimmerHmm v3.02b

gene finder based on

interpolated Markov

models (IMMs)

Majoros, Pertea,

and Salzberg

(2004)

PASA v2

spliced alignments of

ESTs and RNAseq

to model gene

structures

Haas et al.

(2008)

RNAmmer v1.2

Consistent and rapid

annotation of

ribosomal RNA

genes

Lagesen et al.

(2007)

SNAP 2013
Ab initio gene

finding program
Korf (2004)

tRNAscan v1.3.1
Transfer RNA

detection

Lowe and Eddy

(1997)

Wise2 (GeneWise) v2.4

Predicts gene

structure using

similar protein

sequences.

Birney, Clamp,

and Durbin

(2004)

Variant

calling

Biscap v0.11

Variants called from

Pileup format using

binomial

probabilities

Farrer, Henk,

MacLean,

Studholme, and

Fisher (2013)

FreeBayes v0.9.10

Bayesian haplotype-

based polymorphism

discovery and

genotyping

Garrison and

Marth (2012)

GATK v3.7

Collection of tools

with a focus on

variant discovery

McKenna et al.

(2010)

Pilon v1.5

Corrects draft

assemblies and calls

sequence variants

Walker et al.

(2014)
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PacBio or MinION (Koren et al., 2017)), sequencing libraries (e.g., Spades

for DNA, Bankevich et al., 2012; Trinity for RNA, Haas et al., 2013); high

levels of heterozygosity (e.g., Platinus (Kajitani et al., 2014), estimated

ploidies or repeat content, scalability, or computational speeds given differ-

ing computational resources. Reviews of methodologies and tools include

Assemblethon 2 (Bradnam et al., 2013) and Genome Assembly Gold-

standard Evaluations (Salzberg et al., 2012). However, most tools make

use of one of two underlying algorithms: Overlap of reads to construct con-

tiguous stretches of sequences, or k-mers (subread sequences of length k)

organized into deBruijn graphs. In both cases, the longest path through

the graph is considered correct, and bubbles (loops caused by repeats) cut

or removed. Usually the initial reads are organized into contigs, which

are separately orientated and connected to one another into scaffolds (con-

nected byNs, representing ambiguous bases of the estimated length between

the two contigs). The finished assembly should be assessed using a variety of

metrics, as the result may be suboptimal or inaccurate—thereby negatively

impacting any downstream analysis.

A genome assembly will usually aim to represent the nucleotide sequence

of a single isolate, separated into individual chromosomes. However, it is

always (unless from single-cell sequencing), a consensus from a colony or

even population of cells, meaning that the assembly represents a range of

individual genotypes. This is especially relevant when fungal cells are het-

erokaryotic, containing multiple nuclei such as is the case with filamentous

ascomycetes and arbuscular mycorrhizal fungi (Pawlowska & Taylor, 2004).

Sometimes, such a consensus may even be intentional such as with pan-

genomes of Saccharomyces cerevisiae (Song et al., 2015). In nonhaploid EFPs,

including many Candida isolates that represent over 50% of human mycoses

(Nucci &Marr, 2005), the assembly will consist of a consensus (and arbitrary

connection) of haplotypes. Therefore, even a nonerroneous assembly could

easily be wrongly interpreted for various downstream analysis including

genetic variation, linkage disequilibrium, and recombination.

A simple metric to assess the quality of genome assemblies is the total

assembly size—which itself can be informative in identifying contaminants

and miss-assemblies (Studholme, 2016). For example, a genome that is far

larger or smaller than expected for the genus can indicate multiple sequenced

species (i.e., contamination with other organisms), high error rates in the

sequencing, highly repetitive sequence, low sequencing depth, or unsuitable

parameters. To control quality, an important step is to BLAST (Altschul

et al., 1990) the scaffolds against the online or local nonredundant database
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in order to identify whether contamination by another species is contribut-

ing to an erroneously assembled genome. Such a search, in addition to non-

uniform GC content and other assembly metrics, can also be computed by

such tools as the Genome Assembly Evaluation Metrics and Reporting

(GAEMR) package (http://software.broadinstitute.org/software/gaemr/)

or REAPR (Hunt et al., 2013). Given sufficient evidence of contamination,

it is often beneficial to reassemble the reads after excluding any reads aligning

(and therefore originating from) the source of the contamination—which

can lead to improved contiguity and accuracy by excluding erroneous chi-

meric genomic regions. An assembly should then be assessed for its contigu-

ity; a common measure of assembly contiguity is its N50 (meaning 50% of

the assembly is in contigs of this length or larger). Similarly, N90 and N25

are sometimes also reported for assemblies. The N50 can be normalized for

comparisons between multiple assemblies by using the estimated genome

size instead of total assembly size (denoted NG instead of N (Bradnam

et al., 2013)). These metrics can however both be misleading given, for

example, a single very long scaffold above the N(G)50 length, which will

then ignore the remaining assembly which may occur as highly fragmented

scaffolds. Another proposed metric is the proportion of the assembly that has

a length of at least the average eukaryotic gene (2.5 kb) (Bradnam et al.,

2013) and will therefore be approximately the minimum length necessary

for annotation—which may be the primary use for the assembly.

In the past year, genome assemblies from EFPs have included the chytrid

fungus B. salamandrivorans, which is devastating fire salamanders in Europe

(Farrer et al., 2017; Martel et al., 2014). Here, the genome was assembled

using Illumina paired-end reads and SPAdes (Bankevich et al., 2012) into

a draft assembly, revealing a substantial increase in genome length and

expansion of metalloprotease M36 involved in skin destruction compared

with its closest relative B. dendrobatidis (Farrer et al., 2017) (Fig. 2D). The

ascomyceteous fungus Sarocladium oryzae is emerging as major threat for rice

production (Bigirimana, Hua, Nyamangyoku, & H€ofte, 2015) and was

assembled by Illumina paired-end reads and SPAdes assembler (Bankevich

et al., 2012), revealing a range of expanded gene families including the path-

way for steroidal antibiotic helvolic acid thought to be a pathogenicity deter-

minant (Hittalmani, Mahesh, Mahadevaiah, & Prasannakumar, 2016). The

ascomyceteous fungus C. auris is emerging as a multidrug-resistant human

pathogen in intensive care settings across the world and has been Illumina

sequenced and assembled using Velvet (Zerbino & Birney, 2008) and

scaffolded using SSPACE (Boetzer & Pirovano, 2014) and more recently
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using Oxford Nanopore Technology and Illumina (Rhodes et al., 2017).

These assemblies are now being used to determine the genetic mechanisms

that underpin the multidrug-resistant nature of this species to fluconazole,

voriconazole, amphotericin B, and caspofungin (Sharma, Kumar, Meis,

Pandey, & Chowdhary, 2015).

Short- or long-read alignments against a presequenced reference are

more commonly used for NGS datasets than assemblies, providing that a

suitable reference sequence is already available. There are several reasons

for opting for alignment over multiple assemblies. First, it is almost always

quicker in terms of computation time. Second, alignments negate the neces-

sity to identify orthologous regions of the genome needed to make compar-

isons. Indeed, orthology finding from assemblies is hindered by the necessity

for relaxed sequence similarity thresholds in global sequence alignment algo-

rithms. Furthermore, the steps from alignment to variant calling, gene

cataloging, and selection analysis are well established. However, it needs

to be born in mind that suboptimal tools, parameters, or quality checks

can lead to misleading results.

Sequence alignment tools arrange two (i.e., pairwise) or more (i.e., mul-

tiple alignment) nucleic acids or protein sequences, with the intent of iden-

tifying regions of similarity that may indicate functional, or evolutionary

relationships. Pairwise alignment algorithms are often based on either the

Smith–Waterman algorithm (local/subsequences) or the Needleman–
Wunsch algorithm (global/complete sequences). Both create a substitution

matrix based on a scoring scheme (e.g., +3 for match,�2 for mismatch,�2

for indel) for each nucleotide or amino acid, and then trace back from the

highest score. Tools such as EMBOSS’ Needle and Water implement these

algorithms directly, while others use them for extending seeds (prior screen

for short matches), e.g., BWA-mem (Li & Durbin, 2010).

Many heuristic alignment algorithms and tools have been developed to

improve on the speed of the Smith–Waterman and Needleman–Wunsch

algorithms, such as the Basic Local Alignment Search Tool (BLAST)

(Altschul et al., 1990) and the BLAST-like alignment tools (BLAT)

(Kent, 2002), which removes low-complexity regions and makes k-letter

“words” from the query sequence for searching the database of sequences

using a scoring matrix.Mash is another recent and promising ultra-fast geno-

mic distance estimation tool (Ondov et al., 2016). BLAST and BLAT are

most commonly used for querying against a very large database, while

NGS aligners such as BWA-mem (Li & Durbin, 2010) or Bowtie2

(Langmead & Salzberg, 2012, p. 2) are optimized for memory and time-
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efficient alignment of a huge number of reads to a genome (Table 1). Global

alignment tools for whole genomes include MAVID (Dewey, 2007),

MUMMER (Kurtz et al., 2004), and TBA MULTIZ (Blanchette et al.,

2004), which generally identify seeds that are joined (or removed) to form

anchor regions for the final alignment. Others such as STAR (Dobin et al.,

2013) are optimized for alignment of spliced transcripts (e.g., RNAseq data)

to a genome.

To determine the overall accuracies of an input read dataset, alignment,

and SNP calling method, one method is a comparison of false discovery rates

(cFDR) (Farrer, Henk, MacLean, et al., 2013). In this procedure, a specified

number of random single base positions in the reference sequence are ran-

domly changes to one of the other three possible nucleotides. Sequence data

is then aligned to this modified reference sequence, variant-calling per-

formed, and a comparison made to those known changes to ascertain the

overall accuracy. Multiple alignments or variant-calling tools or parameters

can be used iteratively to identify the most suitable bioinformatics pipeline.

Another metric for assessing the alignment quality is to assess the coverage

across the genome by visualization. Some SNP calls such as GATK

(McKenna et al., 2010) include the ability to perform local indel realignment

(realign reads around indels). Importantly, multiple BAMs relating to related

isolates (such as parent and progeny, or those closely related) should be

realigned together to avoid newly introduced discrepancies, i.e., regions

where one isolate is realigned at a region and another is not. However, this

process was recently removed from the best practices of HaplotypeCaller but

retained for UnifiedGenotyper. Other tools such as MUMSA (Lassmann &

Sonnhammer, 2005) compare multiple alignments using an average overlap

score and a multiple overlap score to assess the accuracy of alignments. Both

alignments and assemblies can be improved via preprocessing of reads such as

by removing low quality reads or 30 ends.
There are a diversity of potential variant calling tools available, which are

mostly used postalignment. Many SNP callers consider homozygous and

heterozygous (biallelic) sequences, but often not trialleles, for example,

which can be present at low numbers in genomes that exhibit aneuploidy,

or polyploidy such as that which marks B. dendrobatidis (Farrer, Henk,

Garner, et al., 2013). GATK’s HaplotypeCaller and UnifiedGenotyper

(McKenna et al., 2010) currently require a ploidy to be given as a parameter

to inform its genotype likelihood and variant quality calculations. This prior

setting is therefore poorly suited for the investigation of aneuploidy in EFPs.

Recently the cancer genome variant calling tool MuTect2 (Cibulskis et al.,
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2013) has been incorporated into the GATK and allows for a varying allelic

fraction for each variant—which could provide a work-around for poly-

ploidy or aneuploidy. Separately, FreeBayes (Garrison & Marth, 2012) calls

variants based on a Bayesian statistical framework and is also capable of

modeling multiallelic loci in sets of individuals with nonuniform copy num-

ber. A computationally inexpensive variant caller is BISCAP (Farrer, Henk,

MacLean, et al., 2013), which uses binomial probabilities for an expected

error rate following alignment. The tool Pilon (Walker et al., 2014) calls var-

iants of multiple sizes, including very large insertions and deletions, while

also able to use them for correcting draft assemblies. Indeed, many other

SNP callers have been developed, which may be tailored to data types or

expected levels of variation. The number of possible tools and their rate

of development make benchmarking an issue that needs to be frequently

readdressed to ensure their accuracy and therefore all the downstream anal-

ysis based on it.

For any newly sequenced genome including those of EFPs, one of the

key features to query will be its gene content, which require gene prediction

and annotation protocols. Many tools have been developed (Haas, Zeng,

Pearson, Cuomo, &Wortman, 2011) and may be more or less suited to dif-

ferent genomes, genome fragmentation, repeat content, or gene character-

istics such as intron lengths. Genomic research institutes such as the Broad

Institute of MIT and Harvard, or the U.S. Department of Energy Joint

Genome Institute (DOE JGI) automate their pipelines. However, in prac-

tice, only partial automation is obtainable due to genomic or gene idiosyn-

crasies, which require different tools, different parameters, or at a minimum,

a manual check of certain gene-prediction outputs. Further, various

methods are required for the prediction of protein-coding genes compared

toRNA genes, to determine whether the genes are located on the nuclear or

mitochondrial genome, and it is usually necessary to separately identify

repetitive regions in the genome. However, from a well-annotated genome

sequence, numerous aspects of an EFPs biology can be determined such as

biological pathways, life cycle, mechanisms of pathogenicity, and its rela-

tionship to other species through ortholog detection.

The first step usually taken for gene annotation is repeat identification

and masking (replacing sequence with the ambiguity IUPAC code “N”).

Repetitive sequences within genomes constitute a range of functional and

nonfunctional (in the evolutionary conserved sense) regions of the genomes.

For example, if a genome assembly is finished to the level of whole linear

chromosomes, the ends will contain tandem (consecutive) repeat sequences
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found within telomeres, ranging from 5-mer to 27-mer repeated several

thousand times, which both protect the end of the chromosome from dete-

rioration, chromosomal fusion, or recombination, and as a mechanism for

senescence and triggering apoptosis. Other tandem repeats are found in cen-

tromeres, which are involved in kinetochore formation during mitosis.

Centromeres in fungi are diverse sequences ranging from a few kilobases

in Candida albicans (Sanyal, Baum, & Carbon, 2004) up to 75 kb in

Schizosaccharomyces pombe (Fishel, Amstutz, Baum, Carbon, & Clarke,

1988), and due to their diverse sequences, are best detected by the binding

of the specialized nucleosomes that contain the centromere-specific histone

H3, CenH3. Interestingly, Neurospora centromeres are composed of degen-

erate (following repeat-induced point (RIP) mutations) transposons, mostly

retrotransposons, and simple sequence repeats (Smith, Galazka, Phatale,

Connolly, & Freitag, 2012). Tandem repeats such as those found in telo-

meres and centromeres are grouped into microsatellites (also known as short

tandem repeats or simple sequence repeats), which comprise 2–5mers, and

minisatellite repeats comprising 10–50mers. Micro- and minisatellites are

useful as genomic markers and are also studied for their role in disease. Tools

such as the tandem repeat finder (Benson, 1999) and microsatellite identi-

fication tool (Thiel, Michalek, Varshney, & Graner, 2003) can be used to

identify tandem repeats, while the Tandem Repeat Database is a public

repository of those already identified (Gelfand, Rodriguez, &

Benson, 2007).

Repetitive regions of a genome also include mobile DNA elements such

as retrotransposons, DNA transposons, and miniature inverted-repeat trans-

posable elements. Transposable element content varies in the fungal king-

dom from between 3% (e.g., Aspergillus nidulans, Aspergillus fumigatus, and

Aspergillus oryzae) and 10% (e.g., Neurospora, Magnaporthe) (Galagan,

Henn, Ma, Cuomo, & Birren, 2005), but also as much as 76.4% for species

such as the ascomycetous Blumeria graminis f. sp. hordeı̈ (Barley powdery mil-

dew) (Amselem, Lebrun, & Quesneville, 2015; Spanu et al., 2010).

Retrotransposons usually have long terminal repeats (LTRs) encoding a

reverse transcriptase necessary to convert their transcribed RNA back to

DNA which is inserted back into a new position of the genome. Others

belong to the long interspersed nuclear elements encode a reverse transcrip-

tase and an RNA polymerase II promoter, but lack LTRs. Retrotransposons

lacking reverse transcriptase genes and relying on other mobile elements for

transposition are called short interspersed elements. DNA transposons, in

comparison, do not involve an RNA intermediate and usually encodes
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transposase enzymes in order to bind and incorporate itself into a new posi-

tion in the genome. These genes can be erroneously incorporated into gene

models during prediction and provide nonuniform numbers of predicted

genes compared with closely related isolates or species.

Following repeat masking by such software as RepeatMasker (http://

www.repeatmasker.org/), protein-coding genes are predicted by both

ab initio (based on sequence provided only) and homology based (based

on similarity to known sequences). Ab initio methods rely on probabilistic

models, such as generalized hidden Markov models (GHMMs) or neural

networks (NN) to combine information from sequences that indicate

the presence of a nearby gene (promoters and other regulatory signals)

or protein-coding sequences. Most have individual models to assess, for

example, splice donor sites (50 end of the intron), splice acceptor sites

(30 end of the intron), intron and exon length distributions, open reading

frame length, and transcriptional start and stop sites. Programs such as

Augustus (Stanke et al., 2006), FGENESH (Salamov & Solovyev,

2000), GeneID (Blanco et al., 2007), GeneMark (Besemer &

Borodovsky, 1999), GlimmerHMM (Majoros et al., 2004), and SNAP

(Korf, 2004) are used for ab initio gene calling by first generating a training

set (taking the highest scoring predictions from their GHMM) and then

running across the genome sequence. Others such as GeneMark.hmm-

ES (Lukashin & Borodovsky, 1998) is self-training. While any one of these

methods could provide a modest initial assessment of gene content, it is

worth running a number of tools in order to get a greater range (and there-

fore sensitivity) of predictions.

Homology-based (empirical) gene finding methods search for sequences

that have sequence similarity to previously found genes in other organisms.

These methods provide evidence for gene locations, which are both stand-

alone, and compliment ab initio gene finding methods. This requires trans-

lating regions of the genomes (ideally in all six possible reading frames),

using, for example, a translated BLAST (tblastn) against a database such as

the nonredundant sequences from GenBank (Benson et al., 2012) and/or

Uniprot (Wu et al., 2006). While this step is very computationally expen-

sive, it provides likely protein hits which can then be assessed more rigor-

ously. One such package for providing spliced gene models from these hits is

Wise2 (Birney et al., 2004).

Transcript sequences from the same organism (such as RNAseq,

expressed sequence tags/subsequence of cDNA) provide very strong evi-

dence for gene structures in the genome sequence. A common first step
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is to assemble de novo the RNAseq reads into longer transcripts, via pro-

grams such as Trinity (Haas et al., 2013). The accuracy of Trinity can be

improved with strand-specific RNAseq libraries, the genome-guided

parameter (both where available), and k-mer depth should be increased to

at least 2 for improved specificity. Next, tools such as the Program to Assem-

ble Spliced Alignment (PASA) (Haas et al., 2008) map these assembled tran-

scripts (or unprocessed RNAseq reads) to the genome using GMAP (Wu &

Watanabe, 2005) or BLAT (Kent, 2002), filtering alignments, grouping

alternatively spliced isoforms and output candidate gene structures based

on the longest open reading frame (FASTA file and GFF3). In addition,

PASA can update prepredicted gene structures.

Finally, tools such as EvidenceModeller (EVM) (Haas et al., 2008) or

Maker (Cantarel et al., 2008) assess the evidence provided for gene calls from

a range of gene predictions (ab initio, homology-based, transcript data), and

output a single set of consensus gene structures. Maker also contains a com-

plete pipeline for identifying repeats, aligning ESTs and proteins to the

genome, and ab initio gene prediction, before assessing their evidence.

The final gene set following evidence assessment should be given a final

check for various issues that may remain (coding length nonmodular 3,

genes >50 amino acids, genes with in-frame stops, contain Ns indicative

of spanning contig gaps, covering predicted repeats, etc.) prior to finalizing

these predicted protein-coding genes with annotation, and gene identifiers

such as unique locus tags.

The correct genetic code should be used throughout the entire process of

predicting protein-encoding genes. The standard code (which should be the

default for most tools) is suitable for most fungal nuclear genomes, although

some species such as various Candida species in the CTG Clade have CUG

codons that encode the amino acid serine instead of leucine (Santos,

Keith, & Tuite, 1993), and therefore require the alternative Yeast nuclear

code (Osawa, Jukes, Watanabe, & Muto, 1992). Mitochondrial genomes

all use separate nonstandard codes, a difference that needs to be accounted

for when translating genes in silico as part of the operation of these gene-

prediction methods.

Genes that encode tRNA and rRNA are normally found in large num-

bers throughout a well-assembled genome. rDNA encoding rRNA are usu-

ally found entirely occupying large sections of one or more chromosomes,

comprising both structural rRNA for small (18S) and large (5S, 5.8S, and

28S) components of ribosomes separated by internal transcribed spacer

(ITS) units. These regions of the genome tend to be among the most poorly
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resolved due to their repetitive nature—culminating in noncomplete

regions that underestimates their number, but result in a region of unusually

high depth of coverage following read alignment. Indeed, the rRNA com-

pleteness of a genome can be a proxy of genome assembly quality. Sepa-

rately, ITS1 and ITS2 spacer regions tend to be useful for diagnostic

PCR, fungal abundance (qPCR), and even rudimentary phylogenetics

due to their ubiquity and genetic diversity in most fungal genomes (how-

ever, excluding the microsporidia) (Schoch et al., 2012).

Like protein sequences, RNA families have some level of conserved

sequence, but a more highly conserved secondary structure, which is more

integral to its function than that imposed by its primary sequence. Unlike

protein sequences, ncRNA lack all features apparent from codons and gene

structures (e.g., start, termination, codon bias, acceptor and donor splice

sites, etc.) that are used for gene prediction, making the structure not only

more relevant for its function (or predicted pseudogenization) but also for its

prediction. RNA secondary structure arises from base-pairing interactions

resulting in stems and loops, e.g., the cloverleaf structure of tRNA compris-

ing several stem-loops, or the pseudoknot also comprising several stem-

loops in the RNA component of telomerases (which incidentally is essential

for telomerase activity (Chen & Greider, 2005)).

RNA secondary structure prediction based on the lowest free energy

structure is a nondeterministic polynomial-time hard (NP-hard) problem

(Lyngsø & Pedersen, 2000), and therefore tools based on heuristic algo-

rithms are required for de novoRNA secondary structure (such as HotKnots

(Ren, Rastegari, Condon, & Hoos, 2005) and ProbKnot (Bellaousov &

Mathews, 2010)). However, prediction in a new genome is usually based

on previously identified and characterized ncRNA families, which are often

stored in covariance models (CMs) (analogous to hidden Markov models

(HMMs)) describing both secondary structure and primary sequence con-

sensus (Eddy & Durbin, 1994). For example, the INFERNAL (Inference

of RNAAlignment) software (Nawrocki & Eddy, 2013, p. 1) searches a cus-

tom or collection of ncRNACMs such as the RNA family database (RFam)

(Griffiths-Jones, Bateman, Marshall, Khanna, & Eddy, 2003) comprising

tRNAs, small nuclear RNAs (snRNA), and small nucleolar RNAs

(snoRNAs). snRNAs are involved in splicing and RNA processing, while

snoRNAs either methylate (C/D box snoRNA) or pseudouridylate (H/

ACA box snoRNAs) other RNAs (rRNA, tRNA and snRNA). Separately,

the CM-based tRNAscan-SE (Lowe & Eddy, 1997) can identify tRNA

genes with extremely high sensitivity and specificity, and the HMM-based
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RNAmmer predicts rRNA genes in the nuclear genome (Lagesen

et al., 2007).

It is important to assess the quality of the final gene calls for multiple

potential erroneous calls, such as genes that have a length that is not modulus

3 (i.e., sequences not entirely comprised of codons), genes with STOP

codons within the sequence, or those ending without a STOP codon are

likely errors. Other issues can include very distant exons (e.g.,>15 kb) from

the remainder of the gene will be likely inaccurate. Gene calls that are

supported by only one of multiple gene-prediction methods may also be

more dubious than those supported by multiple methods and tools.

A simple postannotation metric is the total number of genes predicted.

Too many or too few predicted genes for a given genus or species can be

indicative of a failed step in the annotation pipeline, or suggest a problem

with the genome assembly, e.g., species contamination. In addition to gene

count, the completeness of gene sets can be assessed by the coverage of con-

served gene sets such as CEGMA (Parra, Bradnam, & Korf, 2007) and

BUSCO (Simão, Waterhouse, Ioannidis, Kriventseva, & Zdobnov,

2015), which will give a good indicator of the quality of both the annotation

and the assembly protocols. The measure of gene completeness should com-

plement other metrics of genome assembly, and be performed before func-

tional predictions and other downstream analyses are performed.

2.2 Functional Predictions and Gene Family Expansion
Functional genomics describes the relationship between an organism’s

genome and its phenotype, and is widely used to determine novel

pathogenicity-related traits in EFPs. There are numerous experimental ways

to study these traits including gene knockouts, gene silencing, transposon or

chemical mutagenesis, and QTL mapping. Computational methods for

identifying pathogenicity-related gene functions includes Genome Wide

Association Studies (GWAS), which commonly compares two large groups

of individuals that differ by a pathogenicity-related trait, and to then search

for a significant association (low P-value from a chi-squared test of the odds

ratio). GWAS have been used to successfully identify a wide range of can-

didate genes and alleles implicated in disease or pathogenicity-related phe-

notypes, including in a broad range of fungal applications (Plissonneau et al.,

2017). For example, a putative Avirulence gene (virulence factors that are

detected by the host, and thereby prevent or reduce disease) was recently

detected using a GWAS of Zymoseptoria tritici, the ascomycetous fungi
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responsible for septoria lead blotch in wheat (Hartmann, Sánchez-Vallet,

McDonald, & Croll, 2017).

GWAS have several limitations including the necessity for very large

sample sizes, which is commonly not available for EFPs, and the need to

account for the large numbers of multiple comparisons that inevitably lead

to false associations. Furthermore, many populations of fungal pathogens

contain a large clonal component to their life cycle—with the consequence

that variants are physically linked on the chromosome (high linkage disequi-

librium). Clonality therefore impinges on the ability to identify individual

variants that are associated with a trait. Finally, specific functions of a

protein-coding gene (e.g., those encoding chloride channels) are relatively

easy to predict, compared with predicting phenotypes and pathologies

linked to mutations or protein misfolding (e.g., those causing cystic fibrosis

in humans). This section will focus on ab initio and in silico methods of

functional genomics that rely only on a single or very few isolates—such

as might be available from the outbreak of an EFP.

Following (or as part of ) gene prediction, functional annotation can be

assigned to each protein-coding gene, and thereby provide a prediction of its

function in the organism. Perhaps the most common method to do this is to

assign Protein Family (PFAM) domains (Finn et al., 2014), which as of the

current v31.0 (10/2016) has defined 16,712 protein families, and to a lesser

extent, assigning TIGRFAM domains (Haft, Selengut, & White, 2003),

which as of the current v15.0 (10/2014) has defined 4488 protein

families—both of which are generated using HMMs. Each protein family

is composed of one or more functional regions termed domains—which

are found in multiple proteins and protein families. Both PFAM and

TIGRFAM databases provide profile HMMs for each protein families,

which are built from multiple sequence alignments and are searched either

online via web servers (Finn, Clements, & Eddy, 2011) or local copies using

the HMMER3 software (Eddy, 2011). Separately, the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database (Kanehisa & Goto, 2000) can be

searched using the predicted gene sequences using a BLASTx (and a suitably

stringent e-value, i.e., e<1�10�10) to identify various functional informa-

tion on gene functions, their role in biological pathways and cellular pro-

cesses. Any successful matches with sufficiently stringent e values can

provide compelling evidence toward the function of that gene. However,

not all families or domains are contemporaneously informative regarding

the function. For example, many domains of unknown function (DUF)

are present in the database, which have been identified as a conserved
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domain across multiple species, but no known function has yet been

identified.

Gene Ontologies (GO) provide a parallel and complimentary gene pre-

diction along with PFAMs/TIGRFAM/etc. assignment. GO terms repre-

sent a controlled vocabulary and defined set of relationships between them,

as part of the Open Biomedical Ontologies project by the National Center

for Biomedical Ontology (NCBO). GO terms cover three domains: cellular

components, molecular functions, and biological processes, for which a

given gene is often assigned multiple terms, ranging from the very specific

(low hierarchical/child terms) such as molecular function GO:0004375

(glycine dehydrogenase (decarboxylating) activity), to the very generic (high

hierarchical/parent terms) such as molecular function GO:0003824 (cata-

lytic activity). There are a wide range of tools for working with sets of

GO terms, including Blast2GO (Conesa et al., 2005), which uses a stringent

BLAST (e<1�10�10) to identify genes with assigned GO terms, which can

then be reassigned. Once assigned, GO terms can be very useful for

predicted function, grouping genes into functionally relevant categories

and ultimately performing enrichment statistical tests between groups of

genes.

Some functions such as the secretion signal/peptide found at the

N-terminus of newly synthesized proteins destined for the secretion path-

way are best predicted by its biochemical properties rather than its poorly

conserved primary sequence alone i.e., via sequence similarity or homology.

SignalP is a popular tool that predicts the presence of type I signal peptidase

cleavage sites from preprotein sequences in bacteria, archaea, fungi, plants,

and animals (Petersen, Brunak, von Heijne, & Nielsen, 2011; Tuteja, 2005).

Conversely, type II and type IV signal peptidases are restricted to prokary-

otes and require prediction by other methods. In SignalP 3.0 and 4.0, type

I signal peptidase cleavage sites are detected by neural networks, which are

trained on real and negative data from SwissProt (Bairoch & Apweiler,

2000). The two neural networks used in SignalP recognize cleavage sites

and determine if a given amino acid belongs to the signal peptide, respec-

tively. SignalP is also informed by filtering propeptide cleavage sites, win-

dow length across the protein, and a discrimination score (D-score). The

authors of SignalP also assessed the isoelectric point (pH(I); the pH at which

the protein carries no net electrical charge) difference between the signal

peptide and mature protein, which they found to be distinct in prokaryotes,

but not eukaryotes—possibly owing to the much shorter length in eukary-

otes. SignalP 4.0 updates the method by distinguishing between signal
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peptides and N-terminal transmembrane helices, which can be incorrectly

identified. Limitations with SignalP include imperfect sensitivity and spec-

ificity (albeit the best method from their own comparisons to other tools and

methods).

Some proteins predicted to have a signal peptide may nevertheless be

retained intracellularly, i.e., in the endoplasmic reticulum or Golgi. For

example, if the protein contains a C-terminal ER retention signal (KDEL

or KKXX sequence), or via protein–protein interactions in the Golgi, the

protein will not become extracellular (Banfield, 2011; Stornaiuolo et al.,

2003). Furthermore, there are additional nonclassical secretion mechanisms

in eukaryotes, such as via specific membrane transporters (Nickel & Seedorf,

2008). Tools such as SecretomeP (Bendtsen, Jensen, Blom, Von Heijne, &

Brunak, 2004) predict secretory proteins that lack an N-terminal signal pep-

tide. However, this method is tailored primarily to mammalian proteins, and

when recently applied to four chytrid genomes, most proteins were identi-

fied as being nonclassically secreted (6523/10,128 B. salamandrivorans genes;

4478/8644 B. dendrobatidis genes; 4581/8952 Spizellomyces punctatus genes;

2991/6254 Homolaphylictis polyrhiza genes). This finding suggests that the

mammalian-trained pipeline is, at least in this case, overpredicting non-

classical secretion motifs and needs to be retrained specifically to the fungal

secretome (Farrer et al., 2017).

Secreted proteins are often of paramount importance to pathogens in

acquiring nutrients, and interactions with the environment and host. An

illuminating example of this are virulence effectors, which are secreted either

into the environment or directly into the host, where they selectively bind to

a host protein to regulate or modify its intended function (Hogenhout, Van

der Hoorn, Terauchi, & Kamoun, 2009). Effectors are produced by a wide

range of organisms including many fungal and bacterial pathogens, but also

some animals (parasitic nematodes), as well as protists (Plasmodium sp. and

Oomycetes). For example, effectors may encode proteins that target host

defense mechanisms to enable the microbe to gain access to the host cell

or avoid detection (either innate or acquired immunity, for example).

One example is the gene AVR3a (belonging to a group that have an RXLR

or RXLQ motif, and collectively known as RXLRs), which is found in the

Phytophthora genus. AVR3a (specifically AVR3aKI that contains amino

acids C19, K80, and I103) causes suppression of a hypersensitive response

(apoptosis) in potatoes that lack the necessary resistance gene R3a (Bos

et al., 2006), thereby facilitating its initial biotrophic stage of growth.

Changes in the genetic backgrounds upon which virulence effectors are
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found can directly drive EFPs, as has been clearly shown by the change of

virulence due to the horizontal gene transfer (HGT) of ToxA from

Phaeosphaeria nodorum into Pyrenophora tritici-repentis in the 1940s, causing

aggressive tan spot disease in wheat (Friesen et al., 2006).

A large number or fraction of secreted genes in the genome can be an

indicator that a fungus is pathogenic when compared with their related

saprobic relatives; this is clearly the case for the species of Batrachochytrium

(Rosenblum, Stajich, Maddox, & Eisen, 2008). For example, amplifications

of secreted protein repertoires are clearly seen in the genomes of the EFPs

B. salamandrivorans (n¼1527) and B. dendrobatidis (n¼833) compared to the

related free-living saprobic S. punctatus (n¼587) and H. polyrhiza (n¼293)

(Farrer et al., 2017). Here, it was shown experimentally that of the chytrid

genes that were significantly upregulated in vivo (n¼550), a large propor-

tion was unique to B. salamandrivorans (n¼327; 60%), unique to

B. dendrobatidis (n¼43; 8%) or unique to the genus Batrachochytrium

(n¼44; 8%). Furthermore, around half of the B. salamandrivorans and

B. dendrobatidis upregulated genes were secreted (55% and 47%, respec-

tively). The fact that these secreted proteins are both largely not present

in the saprobic chytrids based on ortholog identification, and that they show

increased transcription during host colonization, suggests that the transcrip-

tional response is focused on a unique host-interaction strategy in each

species.

Separately, several genes from a class called Crinkler and Necrosis

(CRN)-like genes can either trigger cell death (such as PsCRN63) or inhibit

cell death (such as PsCRN115) when expressed inside plant cells (Liu et al.,

2011) by pathogens belonging to the Phytophthora and Lagenidium genera of

Oomycetes (Quiroz Velasquez et al., 2014; Schornack et al., 2010).

Crinklers are often located in gene-sparse, repeat rich, regions of the

genome in well-studied eukaryotic plant pathogens (Haas et al., 2009).

A recent study examined gene-sparse regions of the amphibian-infecting

chytrid pathogen B. dendrobatidis (Farrer et al., 2017). Notably, it was found

regions of low gene density include homologs of CRNs. Chytrid CRNs

were identified via BLASTp to those in Phytophthora infestans T30-4

(Haas et al., 2009), and CD-hit (Li & Godzik, 2006) under a number of

sequence similarity identities, as well as trimming the more divergent

C-terminal to 35aa, 40aa, 45aa, and 50aa, followed by, or proceeded by,

a MUSCLE alignment (Edgar, 2004b) with or without removing excess

gaps using trimAl gappyout (Capella-Guti�errez, Silla-Martı́nez, &

Gabaldón, 2009). Motif searching was performed using GLAM2 (Frith,
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Saunders, Kobe, & Bailey, 2008). Searching all of the sequences together

after trimming to 50aa did not yield a convincing single domain. Instead,

it was found that manually separating genes with two overrepresented

sequences obtained the highest confidence alignments spanning the most

number of CRNs (Farrer et al., 2017). This process illustrates the trial-

and-error approaches that can be required for investigating and classifying

novel protein families in EFPs, particularly those with low sequence simi-

larity or small proteins.

CRN-like genes in B. dendrobatidis are characterized by having long

intergenic regions that are consistent with a gene-poor repeat-rich environ-

ment (averaging 1.4 kb)—a trait shared with P. infestans T30-4 (Haas et al.,

2009). Farrer et al. (2017) showed that the CRN-like family is more widely

distributed among the Chytridiomycota than previously realized. Specifi-

cally, this study identified 162 CRN-like genes in B. dendrobatidis, 10 in

B. salamandrivorans, 11 in H. polyrhiza, and 6 in S. punctatus, many of which

(n¼55) belong to a single subfamily (known as DXX). Besides some

sequence similarity, there are multiple differences between CRNs found

in the chytrid genomes compared with Oomycete genomes. For example,

only two chytrid CRNs had predicted secretion signals (via SignalP4

(Petersen et al., 2011))—one in each of the free-living saprobe chytrids

H. polyrhiza and S. punctatus, which contrasts with CRNs in Phytophthora

species that are mostly intracellular effectors that target the host nucleus dur-

ing infection (Stam et al., 2013). Another discrepancy is that CRN-like

genes appeared to be downregulated during advanced infection of a suscep-

tible salamander species (Tylototriton wenxianensis) compared with in vitro

conditions, while many Oomycete CRNs are upregulated in planta

(Chen, Xing, Li, Tong, & Xu, 2013). In both B. dendrobatidis and

B. salamandrivorans, some CRN-like genes were more highly expressed in

the zoospore life stage compared to the sporangia life stage (Farrer et al.,

2017). However, incubation of B. dendrobatidis zoospores with

T. wenxianensis tissue for 2h showed an increased expression of CRN genes,

whereas B. salamandrivorans zoospores were associated with decreased

expression, indicating that CRN genes are possibly of greater interest in

the early infection stage of B. dendrobatidis, but not B. salamandrivorans;

the notable expansion of CRN-like genes in B. dendrobatidis may suggest

that they are of importance; however, their function currently remains

unknown.

To ascertain if the secreted proteins in four species of chytrids included

any large families (in addition to metalloproteases, for example), clustering
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was used to predict secreted genes using the Markov Cluster Algorithm tool

(Enright, Van Dongen, & Ouzounis, 2002) with recommended settings

(Farrer et al., 2017). Associated PFAM domains were found in all or nearly

all members of some tribes, including the second largest, which contained

protease M36 domains, or the sixth largest, which contained the peptidase

S41 domain. The largest tribe had 105 proteins, and belonged entirely to

B. salamandrivorans, as did the fourth largest tribe. Many of the members

of these secreted tribes were significantly differentially expressed between

in vivo and in vitro conditions, including in “Tribe 1” (48% of genes). Fur-

thermore, these tribes are located almost exclusively in nonsyntenic, unique

regions of the B. salamandrivorans genome. However, this study was unable

to identify any sequence similarity to previously described proteins or rec-

ognizable functional domains (BLAST, GO terms, PFAM, TIGRFAM,

etc.) showing that these putative virulence factors require further work to

understand their possible function. This study illustrates an important point:

the constellation of virulence factors that lie within the biodiverse fungal

kingdom has only been touched on, and future (yet undescribed) EFPs will

likely harbor a wealth of undescribed virulence factors that are not represen-

ted in today’s databases, and need (sometimes urgent) investigation.

A further class of proteins that are often of interest in EFPs are transmem-

brane (TM) proteins. An HMM-based method for predicting TMs is

TMHMM, which purports to correctly predict 97%–98% of the transmem-

brane helices (Krogh, Larsson, vonHeijne, & Sonnhammer, 2001), and with

99% specificity and sensitivity. However, the authors note that the accuracy

drops when signal peptides are present. TM proteins function as gateways for

substances to move between the environment and intracellular (such as

voltage-gated and ligand-gated ion channels), and as such are integral to

the functioning of the cell, and at the host–pathogen interface. Toll-like

receptors and receptor kinases are examples of conserved TM pattern rec-

ognition receptors of the innate immune system of animals and plants,

respectively. In Aspergillus, the seven-transmembrane domain protein PalH

is a putative pH sensor required for virulence on mice (Grice, Bertuzzi, &

Bignell, 2013). Another TM protein, TmpL, is necessary for regulation of

intracellular ROS levels and tolerance to external ROS, and is required

for infection of plants by the necrotroph Alternaria brassicicola and for infec-

tion of mammals by the human pathogen A. fumigatus (Kim et al., 2009).

The repertoire of proteases in EFPs is of interest, owing to their

importance in physiology, development, survival, and growth. Further-

more, extracellular serine, aspartic, and metalloproteases are considered
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virulence factors in many pathogenic species (Yike, 2011). Proteases can be

identified, either by generic databases (e.g., nonredundant BLAST database)

or by specialized protease databases (e.g., Merops (Rawlings, Barrett, &

Finn, 2016), which as of release 11, contains 447,156 protein sequences

of all the peptidases and peptidase inhibitors), both of which can be searched

using BLAST.

The metalloproteases of the M36 fungalysin family are important path-

ogenicity determinants in a number of dermatophytes, which cause cutane-

ous infections and grow exclusively in the outermost layer of skin, nails, and

hair of human and animals. Here, skin-infecting organisms, such as

Trichophyton spp. that cause Tinea corporis/ringworm, Tinea pedis/athletes

foot, secrete M36 proteases that are important for causing disease (Zhang

et al., 2014). Again, the chytrid pathogens provide a further good example

of M36 proteases and pathogenicity. Metalloproteases are dramatically

expanded in B. salamandrivorans (Farrer et al., 2017), concordant with the

aggressive necrotic pathology that this pathogen causes. Both

B. salamandrivorans (n¼110) and B. dendrobatidis (n¼35) have expanded

M36 families compared to lower counts in the free-living saprobic chytrids

S. punctatus and H. polyrhiza (n¼2 and n¼3, respectively). Phylogenetic

analysis revealed a subclass of closely related M36 metalloproteases that

are shared across both pathogens that we termed the Batra Group 1 M36s

(G1M36) (Fig. 2D).

Species-specific gene family expansion in chytrid pathogens is illustrated

by the presence of a novel secreted clade of M36 genes (n¼57) unique to

B. salamandrivorans, which were termed the Bsal Group 2 M36s (G2M36)

(Farrer et al., 2017). These G2M36s are entirely encoded by nonsyntenic

regions of the B. salamandrivorans genome, supporting a recent species-

specific expansion. Although most G1M36s and G2M36s are strongly

upregulated in salamander skin, eight Bsal G1M36s (19%) appear more

highly expressed in vitro, suggesting more complex regulatory circuits

underlie this subclass of protease in B. salamandrivorans. Furthermore,

G1M36s showed greater expression in B. dendrobatidis zoospores compared

to sporangia, pointing to a crucial role of these proteases during early host

colonization in B. dendrobatidis, for example, during insertion of their germ

tube into the epidermal cells (Van Rooij et al., 2012). In contrast, the low

protease activity in B. salamandrivorans zoospores, but high activity in the

maturing sporangia, suggests a role during later stages of pathogenesis,

for example, in breaching the sporangial wall of developing sporangia and

subsequent spread to neighboring host cells (Martel et al., 2013).
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Carbohydrate-binding modules (CBM), including CBM18, are

expanded in B. dendrobatidis (Farrer et al., 2017) and been implicated in

host–pathogen interactions (Abramyan & Stajich, 2012). To study individ-

ual protein families defined by PFAM domains, HMMs can be down-

loaded from the PFAM database (Finn et al., 2014) that are then used to

search through a set of proteins using the HMMER3 (Eddy, 2011) appli-

cation hmmsearch (with an e value cutoff of 0.01 or lower). CBM18s are

markedly expanded in both B. dendrobatidis and B. salamandrivorans com-

pared to the free-living chytrids (Farrer et al., 2017). CBM18 containing

proteins are predicted to bind chitin and most copies of these proteins con-

tain secretion signals that will target them to the cell surface or extracellular

space. Species-specific differences are notable in the pronounced trunca-

tion of the lectin-like CBM18s of B. salamandrivorans, suggesting a funda-

mental difference in capacity to bind some chitin-like molecules. In

comparison, CBM18 genes in B. dendrobatidis are threefold longer and har-

bor on average eight CBM18 domains compared with only 2.6 for

B. salamandrivorans. However, their expression was not significantly altered

upon exposure of sporangia to chitinases, suggesting their role in

protecting the fungi from host chitinase activity by fencing off the fungal

chitin unlikely. Rather, it was hypothesized that the CBM18s play a role in

fungal adhesion to the host skin or in dampening the chitin-recognition

host response.

CBM18 genes fall into three large groups among chytrids (Abramyan &

Stajich, 2012). CBM18s containing carbohydrate esterase 4 (CE4) super-

family mainly includes chitin deacetylases clustered together, and called

deacetylase-like. Another group of CBM18s contains a common central

domain of tyrosinase, and called tyrosinase-like. A third group consisted

of genes with no secondary domains is described as lectin-like. The six

B. dendrobatidis LL CBM18 had a total of 48 CBM18 modules (averaging

8 per gene), while the six B. salamandrivorans lectin-like CBM18s had only

16 CBM18 modules (averaging 2.6 per gene) (Farrer et al., 2017).

B. salamandrivorans lectin-like CBM18s are also considerably truncated com-

pared with those of B. dendrobatidis (mean B. salamandrivorans protein

length¼606, mean B. dendrobatidis protein length¼206). Most

B. dendrobatidis CBM18s (17/21; 81%) are upregulated in vivo, although

mostly nonsignificantly (2 DE, 1TL). In contrast, 7/15 (47%)

B. salamandrivoransCBM18s are upregulated in vivo. However, five of these

genes are significantly upregulated including two tyrosinase-like, two

deacetylase-like and one lectin-like. The importance and function of these
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genes remain to be fully demonstrated, however, appear to be involved in

recognizing and binding host ligands as part of the infection process (Liu &

Stajich, 2015).

Identifying gene families in EFPs is a necessary precursor to quantify

increases or decreases relative to close relatives, and that may indicate

why changes in pathogenicity-related traits have occured. For example,

gene family expansions in pathogens compared with closely related

nonpathogens can provide candidate virulence determinants. A common

way for comparing genes and identifying gene family expansions is to first

identify single copy orthologs between two or more species, especially when

one of those genomes is well characterized. Recently, substantial investment

has been made into developing online fungal genomic resources, such as

FungiDB (Stajich et al., 2012) which can be used to assist in the categoriza-

tion of orthologs. However, the protein-coding genes and gene family

expansions make up only one aspect of the EFP’s genome, where other

aspects such as chromosome number may also be important.

2.3 Chromosomal CNV
Pathogenic fungi often manifest highly plastic genome architecture in the

form of variable numbers of individual chromosomes, known as chromo-

somal copy number variation (CCNV) or aneuploidy. CCNV has been

identified across the fungal kingdom in both EFP and nonpathogens alike.

For example, among ascomycetous fungi, CCNV has been identified in the

generalist plant pathogen Botrytis cinerea (B€uttner et al., 1994), the human

pathogen Histoplasma capsulatum (Carr & Shearer, 1998), bakers/brewer’s

yeast (and an occasional opportunist) S. cerevisiae (Sheltzer et al., 2011),

and the human pathogen C. albicans (Abbey, Hickman, Gresham, &

Berman, 2011). The occurrence of stress due to either the host response

or exposure to antifungal drugs has been linked to a rapid rate of CCNV

in Candida spp. (Forche, Magee, Selmecki, Berman, & May, 2009) and,

within the Basidiomycota, the human pathogens Cryptococcus neoformans

and C. gattii are both found exhibiting CCNV (Hu et al., 2011;

Lengeler, Cox, & Heitman, 2001; Sionov, Lee, Chang, & Kwon-Chung,

2010). Even among the Chytridiomycota, B. dendrobatidis shows widespread

heterogeneity in ploidy among genomes and among chromosomes within a

single genome (Farrer, Henk, Garner, et al., 2013). The mechanism(s) gen-

erating chromosomal CCNV in fungi are not yet well understood, but are

thought to occur because of nondisjunction following meiotic or mitotic
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segregation (Reedy, Floyd, & Heitman, 2009), followed by selection oper-

ating to stabilize the chromosomal aneuploidies (Hu et al., 2011).

Dynamic numbers of chromosomes could offer routes to potentially

advantageous phenotypic changes via several mechanisms such as over-

expression of virulence factors (Hu et al., 2011) or drug efflux pumps

(Kwon-Chung & Chang, 2012). CCNV contributes to the maintenance

of diversity through homologous recombination (Forche et al., 2008),

and increased rates of mutation and larger effective population sizes

(Arnold, Bomblies, &Wakeley, 2012). CCNVmay also provide the advan-

tage of purging deleterious mutations through nondisjunction during chro-

mosomal segregation (Schoustra, Debets, Slakhorst, & Hoekstra, 2007).

Thus, CCNV likely represents an important, yet uncharacterized, source

of de novo variation and adaptive potential in many fungi and other non-

model eukaryote microbial pathogens. By mapping read depth and SNPs

across B. dendrobatidis genomes, it was discovered that widespread genomic

variation occurs in ploidy among genomes and among chromosomes within

a single genome (Farrer, Henk, Garner, et al., 2013). Individuals from all

three lineages harbored CCNV along with predominantly or even entirely

diploid, triploid, and tetraploid genomes. Another study also identified

widespread CCNV across diverse lineages of B. dendrobatidis recovered

largely from infected amphibians in the Americas, including a single haploid

chromosome in a global panzootic lineage (GPL) isolate (Rosenblum et al.,

2013). This variation may itself, reflect only part of the full diversity in

B. dendrobatidis, as +2/+3 shifts in ploidy, whole genomes in tetraploid,

or chromosomes in pentaploid or greater, may occur and await discovery.

Chromosomal genotype in B. dendrobatidis was shown to be highly plas-

tic as significant changes in CCNV occurred in as few as 40 generations in

culture (Fig. 2B) (Farrer, Henk, Garner, et al., 2013). It is not known

whether other chytrid species such as B. salamandrivorans also undergo

CCNV, or if this is a unique feature of B. dendrobatidis, or even unique of

just chytrid pathogens—and hence may be intrinsic to their parasitic mode

of life. Currently, CCNV is known to occur in a variety of protist microbial

pathogens, including fungi; however, it is currently not known whether

this genomic feature is specific to a parasitic lifestyle or is a more general

feature of eukaryote microbes; identifying the ubiquity of CCNV or other-

wise across nonpathogenic species will therefore be of great interest. Further,

the manner by which plasticity of CCNV in B. dendrobatidis affects pat-

terns of global transcription and hence the phenotype of each isolate also

remains to be studied. However, it is clear from research on yeast, Candida
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and Cryptococcus, that CCNV significantly contributes to generating altered

transcriptomic profiles, phenotypic diversity, and rates of adaptive evolution

even in the face of quantifiable costs; understanding the relationship

between CCNV and the phenotype of B. dendrobatidis will therefore likely

be key to understanding its patterns of evolution at both micro- and

macroscales.

CCNV has also been identified in three isolates belonging to C. gattii

VGII and VGIII using read coverage (Farrer et al., 2015). Specifically, an

additional (disomic) copy of scaffold 13 in VGII veterinary isolate B8828

was identified, and a disomy of scaffold II in VGIII clinical isolate

CA1280 (syntenic to the first half of WM276 chromosome cgba). Variation

in chromosome copy number has previously been shown to influence the

virulence of Cryptococcus (Hu et al., 2011) and can further provide resistance

to azole drugs by increasing the copy number of the azole drug target

(ERG11) or transporter (AFR1) commonly amplified in drug-resistant

Cryptococcus (Kwon-Chung & Chang, 2012) and across the time-scale of a

single infection (Rhodes, Beale, et al., 2017). However, neither gene

appears in these aneuploidies, suggesting they are not associated with known

drug resistance mechanisms, although may have other effects on those iso-

lates. Separately, a 60 kb intrachromosomal duplication was found in the

middle of scaffold 1 of VGII clinical isolate LA55 (also syntenic to

WM276 chromosome cgba), which interestingly did not appear in the

closely related isolate CBS10090, suggesting it was of a recent origin. This

60 kb region covers 24 protein-coding genes that are not known to influ-

ence drug resistance in Cryptococcus.

In addition to CCNV, chromosomes of EFPs can fuse, split, and undergo

inversions and translocations—which can have a dramatic effect on their

phenotype. One method to study this in silico is to identify orthologs,

and then to map their synteny. Recently, chromosome structure was com-

pared in detail among the lineages of C. gattii (Farrer et al., 2015). Chromo-

some structure was found to be highly conserved between the four lineages,

and very highly conserved within VGII. Almost all syntenic variation was

identified among the three closely related lineages, VGI, VGIII, and VGIV

(Fig. 2A). In total, 15 large (greater than 100 kb) chromosomal

rearrangements were identified, such that on average, only 2.6% of each

of the 16 genomes was rearranged with respect to the others. These

15 rearrangements included 10 translocations (7 interchromosomal and 3

intrachromosomal) and 5 scaffold fusions, most of which (13 of the 15) asso-

ciated with clusters of predictedCryptococcus-specific TcN transposons found
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at centromeres (Janbon et al., 2014), suggesting these are primarily whole

chromosome arm rearrangements. Four of the rearrangements were

supported by multiple isolates, including one chromosomal fusion unique

to VGII, two translocations unique to VGIII (700 and 140 kb, respectively),

and one 450 kb translocation unique to VGIV. These changes may impact

the ability for interlineage genetic exchange, as some crossover events will

generate missing chromosomal regions or other aneuploidies and nonviable

progeny.

2.4 Natural Selection
The widespread emergence of EFPs is testament to their ability to success-

fully adapt to infect diverse hosts and ecological niches, suggesting that their

genomes are able to respond rapidly to natural selection. Characterizing var-

iants in the genome by the type of selection acting upon them requires pop-

ulation genetics approaches. Some possible scenarios for variants in a

population include those that are becoming fixed or rapidly evolving due

to positive or diversifying selection, being purged due to purifying selection,

being maintained in a population due to stabilizing selection, or accumulat-

ing mutations due to relaxed selection. In addition to selection pressures,

knowledge of rates of recombination, ploidy, life cycle, population struc-

ture, and effective population size are all necessary to accurately assess the

processes regulating and influencing allele frequencies in a population. Fur-

thermore, a knowledge of how multiple loci or genes contribute to a given

phenotype (epistasis) or are masked by others (pleiotropy), as well as random

chance, e.g., genetic drift, gene flow, and HGT between populations all

contribute to their genetic makeup.

One approach to study selection from genomic data is to look at

patterns of synonymous mutations (those that maintain the amino acid

sequence of the protein) and nonsynonymous mutations (those that change

the amino acid sequence of the protein). An informative approach is to

calculate the number of synonymous mutations per synonymous site (posi-

tions in the codon that can undergo synonymous mutations) (dS) and the

number of nonsynonymous mutations per nonsynonymous site (dN)

(Fig. 2F). However, the dN/dS ratio was originally developed for distantly

diverged sequences, i.e., species, where the differences represent

substitutions that have fixed along independent lineages, and is therefore

unsuitable for identifying selection within a population (Kryazhimskiy &

Plotkin, 2008).
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The identification of variants in an alignment can be the result of mul-

tiple substitutions (increasingly with age since most recent common ancestor

(MRCA)), and therefore substitution models (Markov model) are usually

used when calculating dN and dS values (also denoted Ka and Ks, respec-

tively). Different substation models may also differentially weight transitions

(Ts) with respect to transversions (Tv) as Ts are more common at the third

position in the codon, as well as GC and base/codon bias inherent to some

genomes. Higher Ts/Tv ratios are also caused by spontaneous or cytidine

deaminase-mediated deamination of methylated cytosines (Cooper, Mort,

Stenson, Ball, & Chuzhanova, 2010), with differences even between animal

mitochondrial genomes compared with their nuclear genomes (Belle,

Piganeau, Gardner, & Eyre-Walker, 2005). Finally, suitable substitution

models can be used by phylogenetic applications such as PAML (Yang,

2007), which estimates dN, dS, and dN/dS¼ω by maximum likelihood.

When comparing two sequences (i.e., reference and consensus), any

selection detected using dN/dS will not reveal where on the phylogenetic

tree that selection has occurred, or even which of the two sequences or iso-

lates are under selection. A more comprehensive test is to distinguish

between selection on the reference sequence vs selection on the consensus

sequence by using the branch-site model (BSM) of selection in the Codeml

program of PAML (Yang, 2007) to calculate ω across genes and branches/

lineages. Multiple corrections are then used to improve specificity for pos-

itive selection (such as Benjamini–Hochberg (Benjamini & Hochberg,

1995), Bonferroni correction (Dunn, 1959) or Storey-Tibshirani

(Storey & Tibshirani, 2003)).

Comparing ω values for different gene categories, or individual genes, is

indicative of the net selective pressures acting upon these loci. For example,

in Paracoccidioides, the set of genes evolving under positive selection includes

the surface antigen gene GP43, the superoxide dismutase gene SOD3, the

alternative oxidase gene AOX, and the thioredoxin gene (Muñoz et al.,

2016). Each are virulence-associated genes of fundamental importance in

Paracoccidioides and other dimorphic fungi. In Phytophthora clade 1c, a high

proportion of genes annotated as effector genes show signatures of positive

selection (300 out of 796) (Raffaele et al., 2010). In B. dendrobatidis, CRN-

like genes in both BdCAPE and BdCH had the greatest median, upper quar-

tile, and upper tail values of ω compared with other gene categories tested

(Farrer, Henk, Garner, et al., 2013). These tests are therefore very useful

for identifying selection pressures acting on different genes between

populations.
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When attempting to understand recent selective processes, alternative

methods need to be applied such as the direction of selection (DoS) measure

for genes with few substitutions (Stoletzki & Eyre-Walker, 2011). DoS is

based on the McDonald–Kreitman test, where the count of fixed synony-

mous (Ds) and fixed nonsynonymous (Dn) is used in conjunction with

the numbers of polymorphisms (in this test defined as sites with any variation

within species) and denoted Pn for nonsilent and Ps for silent polymor-

phisms. Next, using an 2�2 contingency table (McDonald & Kreitman,

1991), deviation from the neutrality index (NI¼DsPn/DnPs or (Pn/Ps)/

(Dn/Ds)) can be detected and will indicate positive selection where Dn/

Pn>Ds/Ps. However, being a ratio of two ratios, the neutrality index is

undefined when either Dn or Ps is 0 and tends to be biased and to have a

large variance, especially when numbers of observations are small

(Stoletzki & Eyre-Walker, 2011). The DoS measure does not have these

issues, and so is suitable when the data is sparse. More recently, powerful

approaches have been developed that utilize generalized mixed models to

estimate selection coefficients for new mutations at a locus and including

the synonymous and nonsynonymous mutation rates alongside species

divergence times (Eilertson, Booth, & Bustamante, 2012). Such approaches

have further been extended to take into account intragenic heterogeneity in

the intensity of natural selection (Zhao et al., 2017).

Using the BSM in Codeml, genes with very smallQ-values are evidence

for positive selection. For example, inC. gattii, multiple subclades had lowQ

values for the cell wall integrity protein SCW1 and the iron regulator 1,

while other subclades such as VGI excluding a more divergent isolate had

a low Q value for heat shock protein (HSP) 70 (Farrer et al., 2015)—all

of which may play roles at the host–pathogen interface. Additionally, two

genes (CDR ABC transporter, and ABC-2 type transporter) were indepen-

dently identified in four subclades of C. gattii. Additionally, the PFAM

domain “ABC transporter” belonging to a third gene was independently

enriched in three of these subclades. Each of these transporters belongs to

a single paralog cluster of six genes, which includes the ABC transporter-

encoding gene AFR1. This class of gene includes multidrug transporters

with azole and fluconozole transporter activity in C. neoformans

(Sanguinetti et al., 2006), C. albicans (Gauthier et al., 2003) and Penicillium

digitatum (Nakaune, Hamamoto, Imada, Akutsu, & Hibi, 2002). However,

the closest C. gattii ortholog to AFR1 was not one of the three under selec-

tion.While it is likely that selection pressures driving genetic variation in the

C. gattii population are occurring predominantly in the environment
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(Cryptococcus is nontransmissable between hosts), they might also result in

key pathophysiological differences in humans.

Within-species data on allele frequency spectra are used to detect impacts

on natural selection that occur within more recent timeframes. These

methods include Tajima’s D, which is commonly used to describe

genome-wide allele frequency distributions. Tajima’s D is a widely used

metric that distinguishes between genomic regions that are evolving neu-

trally (i.e., are under mutation/drift equilibrium) to those that are evolving

nonneutrally through the action of selection or demographic processes

selection (Tajima, 1989). The biological interpretation of Tajima’s D how-

ever is not straightforward as divergence from neutral expectations (D¼0)

can be due to different processes that include demographic events alongside

the intensity of natural selection. For example, on one hand a negative value

of D<0 (equating to an excess of rare alleles) can owe to sweeps on a

selected polymorphism or population expansion following a genetic bottle-

neck. On the other hand, a positive value of D>0 (equating to a scarcity of

rare alleles) can owe to either balancing selection or a demographic contrac-

tion. In both cases, correct interpretation of D requires further population

genetic analysis. A range of other methods for intrapopulation selection have

been developed or used to infer selection, including Fu and Li’sD and F, Fay

and Wu’s H test, long range haplotype test, iHS, LD decay, and FST
(Biswas & Akey, 2006). Different methods may have benefits over others

depending on sample size, sequence similarity or distance, population struc-

ture, population size, or recombination rates (along with other population-

specific traits). Determining the best tools and methods usually requires

some benchmarking on the data, testing the effect parameters has on results,

and often comparing the results between tests to look for consistency. Ulti-

mately, identifying genes or gene categories that are rapidly changing or are

unusually conserved can offer new insights into the biology and pathology

of EFPs.

A striking example of the response of fungi to directional selection lead-

ing to a novel emerging trait is seen when antifungal drugs are used to treat

infectious fungi. Fungicides are an essential component in our armamentar-

ium against fungal disease with sterol demethylation inhibitor (DMI) com-

pounds, such as triazoles and imidazoles, representing the largest class of

fungicides that are used in agriculture. These compounds are widely

deployed for crop protection with, for instance, over 250,000 kg being used

to protect UK crops each year (European Centre for Disease Prevention and

Control, 2013) and the global usage being in the thousands of tonnes. In
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parallel, azoles are used as frontline drugs to protect humans and other ani-

mals against pathogenic fungi. However, the dual-use of DMIs in both clin-

ical and agricultural settings may come at a considerable human cost as in

recent years’ multiazole resistance in fungi that infect humans has been

observed as a widely emerging phenomenon across Europe and beyond.

This emergence of resistance has led to the hypothesis that the deployment

of azoles in agriculture has led to selection for antifungal resistance not only

in target crop pathogens (Cools & Fraaije, 2008; European Centre for

Disease Prevention and Control, 2013) but also those fungal species that

cooccur in their environment, and that can opportunistically infect humans,

specifically the saprophytic genus Aspergillus (European Centre for Disease

Prevention and Control, 2013). Ergosterol is an essential component of

the fungal cell membrane and is the target of triazoles that inhibit its biosyn-

thesis, thereby interfering with the integrity of the fungal cell membrane

(Diaz-Guerra, Mellado, Cuenca-Estrella, & Rodriguez-Tudela, 2003). In

Aspergillus, azole resistance can be an intrinsic phenotype, as it is known

to occur in cryptic Aspergillus species related to A. fumigatus, specifically

A. lentulus and A. pseudofischeri (Van Der Linden, Warris, & Verweij,

2011), whereas wild-type A. fumigatus and A. flavus are sensitive to these

drugs. In A. fumigatus, azole resistance is known to be an acquired trait that

occurs after azole exposure during medical treatment, or after fungicide

exposure in the field where A. fumigatus widely occurs in the soil. While

a spectrum of resistance mechanisms to azoles has been characterized in

A. fumigatus (Fraczek et al., 2013; Meneau, Coste, & Sanglard, 2016), azole

resistance is frequently the result of mutations in the cyp51A gene. Many

azole-resistant isolates have nonsynonymous point mutations at codons in

this gene, for example, at positions G54, M220, and G138 (Chowdhary,

Sharma, Hagen, & Meis, 2014), which are primarily found in patients

who have been treated for long periods with azoles (Verweij,

Chowdhary, Melchers, & Meis, 2016). However, in addition to mutations

that are commonly associated with the de novo acquisition of resistance in

the patient, an increasingly large constellation of cyp51Amutations are found

to occur in “wild”A. fumigatus.These mutations are largely characterized by

having a tandem repeat (TR) duplication in the promotor region of cyp51A

linked to structurally important nonsynonymous SNPs (Meis, Chowdhary,

Rhodes, Fisher, & Verweij, 2016).

It is now evident that triazole resistance in Aspergillus has a global distri-

bution and constitutes a worldwide EFP with important consequences to

human health. In some regions, up to 7% of patients are culture-positive
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for Aspergillus now harbor environmentally associated azole-resistance and

azoles are increasingly failing in their role as frontline choices of therapy.

Population genomic analysis has been used to show that the most frequently

occurring environmental-resistance allele, known as TR34/L98H, occurs

on a subset of the observed genetic diversity ofA. fumigatuswith strong link-

age disequilibrium being observed, and associations to clonal population

sweeps in regions of high azole usage such as India. The balance of evidence

suggests that TR34/L98H is a relatively recent and novel evolutionary inno-

vation, and that it is perturbing the natural population genetic structure of

A. fumigatus in nature as selective sweeps imposed by this allele occur. Fitness

costs that are associated with azole-resistance alleles appear to be negligible,

and diversification in nature is known to occur as mating occurs leading to

the genesis of new combinations of azole-resistance alleles (Abdolrasouli

et al., 2015). Thus, strong direction selection through the global usage of

azoles appears to have irrevocably perturbed the worldwide population

genetic structure ofAspergillus, alongside many other plant pathogenic fungi,

leading to worldwide breakdown in our ability to use this important class of

drugs to secure our health and food security (European Centre for Disease

Prevention and Control, 2013).

2.5 Genomic Approaches to Detecting Reproductive Modes,
Demographic and Epidemiological Processes in EFPs

2.5.1 Know Your Enemy
Key to the genomic analysis of an EFP is to “know your enemy.” Within

this context, is the (often novel) EFP a single genotype, a lineage, a species,

or a set of species? These distinctions are important as they determine the

evolutionary trajectory of the organism by determining the type and rate

of evolutionary changes that will occur through time, and how these need

to be analyzed within an epidemiological context. Wiley (1978) used an

evolutionary concept to define species as “⋯ a single lineage of ancestor

descendent populations which maintains its identity from other such line-

ages and which has its own evolutionary tendencies and historical fate.”

The evolutionary species concept has been used as the framework that spe-

cies of fungi can be identified using operational species concepts that use the

genealogies inferred from DNA sequences. Of most benefit to analyses of

fungal diversity, the system of genealogical concordance phylogenetic spe-

cies recognition (GCPSR) has been widely used to define evolutionary sig-

nificant units by identifying the transition from genealogical concordance to

conflict (also known as reticulate genealogies) as a means of determining the
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limits of species (Dettman, Jacobson, & Taylor, 2003; Taylor et al., 2000).

An important use of whole-genome data therefore is to determine the extent

that evolutionarily significant units occur within the EFP, be these on a

global scale or within a localized outbreak setting.

There are two fundamental means by which fungi and other organisms

transmit genes vertically to the next generation, either via clonal reproduc-

tion or via mating and recombination (Taylor, Jacobson, & Fisher, 1999).

Under a purely clonal reproductive mode, each progeny has as single parent

with its genome being an exact mitotic copy of the parental one, and all parts

of the parental and progeny genomes share the same evolutionary history. At

the other extreme are genetically novel progeny formed by the mating and

meiotic recombination of genetically different parental nuclei, events that

cause different regions of the progeny genome to have different evolutionary

histories. However, many fungi do not fit neatly into these two categories.

For instance, on one hand recombination need not be meiotic or sexual

because mitotic recombination via parasexuality can mix parental genomes.

On the other hand, clonality need not be solely mitotic and asexual, because

self-fertilizing or homothallic fungi make meiospores with identical parental

and progeny genomes. In addition to the observation that reproductive

mode (clonal or recombining) may be uncoupled from reproductive mor-

phology (meiosporic or mitosporic), there is the complication that the same

fungus may display different reproductive modes in different localities at dif-

ferent times. These are important distinctions from the point of view of

EFPs, as many fungi are flexible in their ability to undergo genetic recom-

bination, hybridization, or HGT (Taylor et al., 1999). This flexibility in life

histories allows not only the clonal emergence of pathogenic lineages from

their sexual parental species, but can also allow the formation of novel

genetic diversity by generating mosaic genomes that may lead to the genesis

of new pathogens (Stukenbrock & McDonald, 2008).

Reproductive barriers in fungi are known to evolve more rapidly

between sympatric lineages that are in the nascent stages of divergence than

between geographically separated allopatric lineages, in a process known as

reinforcement (Turner, Jacobson, & Taylor, 2011). As a consequence, the

anthropogenic (human-associated) mixing of previously allopatric fungal

lineages that still retain the potential for genetic exchange across large

genetic distances has the potential to drive rapid macroevolutionary change.

Although many outcrossed individuals, or genuine species hybrids, are invi-

able owing to genome incompatibilities, large phenotypic leaps can be

achieved by the resulting “hopeful monsters,” potentially leading to host
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jumps and increased virulence. Therefore, a nuanced understanding of gene

flow within and among fungal lineages is important as recombination is

known to novel new interspecific hybrids with novel pathogenic pheno-

types as lineages come into contact (Giraud, Gladieux, & Gavrilets, 2010;

Inderbitzin, Davis, Bostock, & Subbarao, 2011).

The sequencing of the brewer’s yeast S. cerevisiae represented a genetic

landmark as it was the first fully sequenced eukaryotic genome. From this

initial assembled sequence, over a thousand resequenced genomes have

now been generated for S. cerevisiae and its close relatives leading to an

unparalleled genomic description of the evolution of this model globalized

fungal species across different spatial and temporal scales (Dujon & Louis,

2017; Liti et al., 2009). Descriptions of global patterns of S. cerevisiae

genome-wide diversity are now identifying ancestral populations found in

South East Asia (Wang, Liu, Liti, Wang, & Bai, 2012) alongside lineages

which have undergone global spread through comigrating with humans

(Liti et al., 2009). While many genotypes of S. cerevisiae are “clean

lineages,” others show widespread outcrossing that has resulted in gene flow

generating mosaic genomes that are characterized by genetic introgressions

from other lineages of S. cerevisiae, and also via hybridization with other

related species of closely wild yeasts such as Saccharomyces paradoxus. There-

fore, a GCPSR analysis, although not yet formally done, would likely show

that the genomes that comprise the Saccharomyces clade are evolving in a

reticulate manner rather than in a strictly genealogically concordant manner

(Dujon & Louis, 2017). Reticulate evolution is likely to be the case for many

fungal lineages that we currently recognize as species, and represents a fun-

damental challenge for the modern fungal taxonomist as well as fungal

epidemiologist.

2.5.2 Occurrence of EFPs Caused by Clonal Through to Reticulate
Evolution

The correct interpretation of the genetic epidemiology of a fungal outbreak

critically depends on understanding how the outbreak isolates are related to

the species-wide diversity across the realized global range of the pathogen.

A key question is to determine whether the EFP represents the long-distance

dispersal of a species resulting in host shifts and the loss of population

diversity—clonal evolution, or is a genetic recombinant with novel pheno-

typic traits—reticulate evolution. Often in the context of an emergence of a

novel fungal pathogen, these data can take months, years, or even decades to

accrue (but see Islam et al., 2016). However, phylogenomic analysis is likely
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to provide crucial understanding of the evolutionary and epidemiological

drivers leading to a mycotic outbreak. For example, genetic evidence of

the clonal evolution of an EFP following a phylogeographic “leap” from

its parental, sexual, population has been forcefully illustrated by the emer-

gence of the aetiological agent of bat white-nose syndrome, P. destructans

(Blehert et al., 2009). This mycosis emerged in 2006–07 from a single index

outbreak site, spreading and devastating multiple species of bats across North

America. However, while bats across Europe are infected by this fungus,

they appear thus-far unscathed suggesting that European bats have a longer

history of coevolution with P. destructans compared to their North America

conspecifics. Support for this hypothesis initially came from multilocus evi-

dence showing that European isolates of P. destructans are highly polymor-

phic at all loci examined (Leopardi, Blake, & Puechmaille, 2015) and are

heterothallic with bothmating types coexisting within single bat hibernacula

(Palmer et al., 2014). In comparison, recent comparative genome analyses of

North American outbreak isolates of P. destructans show that they are not

only genetically highly homogenous but also comprise a single mating type

(Palmer et al., 2014; Trivedi et al., 2017) and show no evidence of recom-

bination. These data strongly support the hypothesis that a single genome of

P. destructans contaminated North America from a thus-far unidentified

location in Europe, followed by clonal amplification and continent-wide

spatial expansion of this single genotype.

While the emergence of P. destructans presents a dramatic example of a

contemporary clonal spatial escape, many other species of EFP show

strong similarities to the basic process described earlier. Human-mediated

intercontinental trade has been linked clearly to the spread of animal-

pathogenic fungi through the transportation of infected vector species.

B. dendrobatidis has been introduced repeatedly to naive populations world-

wide as a consequence of the trade in the infected, yet disease-tolerant spe-

cies such as North American bullfrogs (Lithobates catesbeiana) (Garner et al.,

2006) and African clawed frogs (Xenopus laevis) (Walker et al., 2008). Recent

genome sequencing of a global collection of over 250 genomes of

B. dendrobatidis has been used to prove that a single genotype, BdGPL, glob-

ally emerged in the early 20th century to cause the patterns of amphibian

decline seen to date. Analogous to P. destructans, population genomic com-

parisons of sequenced B. dendrobatidis isolates show clear patterns of emer-

gence from a defined geographic location, in this case East Asia (O’Hanlon

and Fisher, unpublished observation), where isolates of B. dendrobatidis show

levels of nucleotide diversity that are many fold higher than are seen across
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other global regions. However, in contrast to P. destructans, the emergence of

amphibian chytridiomycosis across over half a century has allowed substan-

tial diversification of the outbreak lineage BdGPL to occur, including the

homogenization of large tracts of the polyploid genome through losses of

heterozygosity caused by mitotic recombination (Farrer et al., 2011;

James et al., 2009). Furthermore, consecutive waves of expansion by Bd

out of its East Asian home range has allowed globalized lineages to recontact

and form recombinant genotypes many decades later (O’Hanlon and Fisher,

unpublished observation).

As the rate of interlineage recombination between fungi will be propor-

tional to their contact rates, a prediction is that the globalization of patho-

genic fungi will increase the frequency that recombinant genotypes are

generated. Confirming this hypothesis, outcrossing to generate novel mosaic

genomes among lineages is now increasingly observed for sequenced isolates

of B. dendrobatidis in regions where lineages are found to occur in sympatry.

The process of recombination through secondary contact is potentially

important in an epidemiological context as theory and experimentation have

shown that virulent lineages can have a competitive advantage that results in

increased transmission (de Roode et al., 2005; Karvonen, Rellstab, Louhi, &

Jokela, 2012). This implies that the generation of novel genotypes with

varied virulence phenotypes may force the epidemiological characteristics

of a disease system as well as allowing the generation of novel interlineage

recombinant mosaic genomes with novel phenotypes. A case in point here

is the formation of a novel pathogen of triticale, B. graminis triticale, which

evolved through the hybridization of two formae specialis from wheat and

rye hosts (Menardo et al., 2016) clearly demonstrating that new evolution-

arily significant units, and thus EFPs, can be generated through outcrossing.

The use of population genomics is increasingly widely used to map

phylogeographic escapes that have led to outbreaks of EFPs. Owing to its

ability to cause severe disease in humans, the basidiomycete yeasts

C. neoformans andC. gattii have been subjected to detailed genomic scrutiny.

Both species show the existence of strong genetic subdivision into lineages

with high statistical support (Farrer et al., 2016; Rhodes, Desjardins, et al.,

2017). Whether these represent evolutionary species or not is currently a

subject of wide debate as genome-wide tests (Hagen et al., 2015;

Menardo et al., 2016) of genealogical concordance have not been performed

to date (Hagen et al., 2015; Kwon-Chung et al., 2017). Certainly, the real-

ized potential for interlineage recombination is apparent as hybrid ancestry is

readily detected based on the detection of large blocks of shared ancestry
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among all three lineages ofC. neoformans var. grubii (lineages VNI, VNII, and

VNB) (Rhodes, Desjardins, et al., 2017) and interlineage hybrids between

C. neoformans and C. gattii have been described (Bovers et al., 2006;

Engelthaler et al., 2014). However, superimposed upon this background

of mosaic lineages, population genomic analysis of both species show very

clear evidence of clonal expansions that are associated with clinical disease.

C. neoformans lineage VNI appears to have expanded globally (likely

anciently) due to widening avian host distributions (Litvintseva et al.,

2011; Rhodes, Desjardins, et al., 2017), and the emergence of C. gattii lin-

eage VGIIa in the Pacific Northwest has recently caused a widely studied

outbreak of aggressive clinical disease (Engelthaler et al., 2014; Fraser

et al., 2005; Hagen et al., 2013). For fungi that cause disease in plants, clonal

expansion causing epidemic outbreaks following long-distance dispersal of

infectious propagules has relentlessly attacked agriculturally important crops

and damages our ability to safely feed humanity on an annual basis (Fisher

et al., 2016, 2012; Fones et al., 2017). Examples here are many (Fisher

et al., 2016, 2012; Fones et al., 2017; McDonald & Stukenbrock, 2016)

and include the recent emergence of wheat blast caused by a clonal outbreak

of M. oryzae vectored from South America to Bangladesh with associated

catastrophic losses (Islam et al., 2016). This study is notable in that the team

was able to sequence and assemble an open-access genome-wide dataset of

SNPs derived from a broad global set of isolates within a matter of months in

order to identify the likely geographic source of the Bangladesh outbreak,

thus illustrating how the future of rapid population genomic analysis of EFPs

may unfold.

Beyond describing the spatiotemporal phylodynamic aspects that under-

pin EFPs, population genomics is leading to an increasingly nuanced under-

stand of how fungi acquire novel pathogenicity traits through the process of

HGT. HGT is a special case of hybridization, where a defined genetic locus

is transferred between large genetic distances that range from interspecies

through to inter-kingdom transfers. An arresting example of a locus-specific

HGT leading to the evolution of an EFP was determined through sequenc-

ing the genome of the wheat pathogen P. nodorum where a gene encoding a

host-specific protein toxin (ToxA) was identified by homology to a known

toxin from another wheat pathogen P. tritici-repentis. It is now known that

ToxA jumped from P. nodorum into P. tritici-repentis through close genetic

linkage to a retrotransposon, sometime in the 1940s resulting in the rapid

emergence of aggressive tan spot disease of wheat caused by P. tritici-repentis

(Friesen et al., 2006). More recent advances in other species have further
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detailed the acquisition of novel virulence-associated loci via HGT in Fusar-

ium pseudograminearum where horizontal transfers from bacterial and other

fungal species were discovered that were clearly associated with virulence

in this EFP (Gardiner et al., 2012).

2.5.3 Mutation Rates, Molecular Clocks, and EFPs
A key question that needs to be asked early on when analyzing an outbreak

of an EFP is to determine when the genotype (or phenotype) of interest

evolved. This question is currently being addressed for a wide variety of

EFPs including Batrachochytrium and Cryptococcus sp. For the latter, compar-

ative genomics has been used to compare orthologous-coding regions in

order to determine the proportion of nucleotide sites that have undergone

substitutions. Such analyses were recently used to show that �17% of sites

were polymorphic when representative genomes of C. gattii and

C. neoformans were compared against one another. If fungal mutation rates

lie between 0.9�10�9 and 16.7�10�9 substitutions per nucleotide per year

as has been calculated across a range of filamentous fungi (Kasuga, White, &

Taylor, 2002; Sharpton, Neafsey, Galagan, & Taylor, 2008), then the diver-

gence time between these species would lie between 5.2�106 and

96.7�106 years ago, which is concordant with the breakup of the Pangean

supercontinent causing allopatric speciation of C. neoformans and C. gattii

through a model of vicariance (Casadevall, Freij, Hann-Soden, & Taylor,

2017). However, a cautionary note needs to be interjected here: Accurate

estimates of substitution rates are crucial in order to investigate the evolu-

tionary history of virtually any species. It becoming increasingly apparent

that “the molecular clock” is not a one-size-fits-all and in fact can vary

by two orders of magnitude even within a single lineage. A case in point

here are recent investigations into the population genomics of microevolu-

tion in serially collected isolates of C. neoformans from HIV/AIDs patients

with cryptococcal meningitis in South Africa. While comparisons revealed

a clonal relationship for most pairs of isolates recovered before and after

relapse of the original infection, one pair of isolates manifested a substitution

rate that was greatly inflated above that of the others. Further investigation

showed the occurrence of nonsense mutations in DNA mismatch repair

pathways leading to the evolution of a hypermutator phenotype (Rhodes,

Beale, et al., 2017).

The occurrence of hypermutators in fungal populations is now being

described more widely, not only in Cryptococcus (Boyce et al., 2017;

Rhodes, Beale, et al., 2017) but also species of Candida (Healey et al.,
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2016). This means that there is a real need to carefully scrutinize the range of

substitution rates within and between species, and to not assume a “one-size-

fits-all” approach as this is almost certainly incorrect. A further complexity is

that nuclear genomes that have undergone recombination are mosaics of

gene genealogies with varied evolutionary histories, which can have the

effect of creating a false signal of mutation. Therefore, in order to accurately

estimate substitution rates, efforts need to be made to control for the effects

of recombination, either by directly partitioning the data around

recombining sites as was done to date the origin of the Batrachochytrium

hypervirulent lineage BdGPL to the 20th century (Farrer et al., 2011) or

by choosing a nonrecombining section of the genome, such as the

mitochondrial DNA.

Once appropriate genomic regions have been identified, then the most

direct approach is to use root-to-tip estimations of substitution rates for col-

lections, where the MRCAs are known from either a fossil record or time-

dated biological events such as date of isolation. Critically, for root-to-tip

estimations of rates to work, studies need to be able to access time-stamped

genomic data that is measurably evolving through time (Rieux & Balloux,

2016). If time-calibrated phylogenies that are measurably evolving can be

constructed, then sophisticated analyses of demographic histories can be

inferred including the estimation of effective population sizes through time,

implemented in coalescent-based algorithms such as BEAST (Drummond &

Rambaut, 2007). Such analytical approaches have proven critical to under-

standing pandemics of viruses such as HIV (Faria et al., 2014) and the spread

of bacterial pathogens (Croucher & Didelot, 2015). However, beyond the

single example of our attempt to understand the date of BdGPLs origin

(Farrer et al., 2011), we are unaware of serious attempts to analyze EFPs

using modern tip-calibrated approaches to estimating fungal molecular

clocks with rigor.

3. EPIGENOMIC VARIATION WITHIN AND BETWEEN
POPULATIONS OF EFPs

Phenotypic traits of EFPs are determined by their genomes, the envi-

ronment, and their interactions. Epigenetics was a name given by Conrad

Waddington to “the branch of biology which studies the causal interactions

between genes and their products, which bring the phenotype into being”

(Goldberg, Allis, & Bernstein, 2007). However, the term has since been used

to describe a range of processes: for example, the temporal/spatial control of
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gene activity during animal development (Holliday, 1990), and changes in

phenotype caused without alterations in the DNA sequence, that are either

not necessarily heritable (Bernstein et al., 2010), or are exclusively heritable

(Berger, Kouzarides, Shiekhattar, & Shilatifard, 2009). The latter definition

(and the others listed) includes a wide range of processes ranging from base

modifications such as cytosine methylation and cytosine hydro-

xymethylation, as well as histone posttranslational modifications, nucleo-

some positioning, and ncRNA regulating gene expression.

Epigenetic processes often culminate in differential expression, e.g., nucle-

osome occupancy negatively correlating with gene expression (Leach et al.,

2016). Indeed, detecting expression values between conditions, or between

isolates or even orthologous genes between species remains a key question

for many EFPs and has been discussed in some detail in the previous sections.

Many tools have been made available for detecting levels of expression and

expression differences. A key normalized metric from RNAseq is the

“reads per kilobase of transcript model per million reads” (RPKM). RPKM

can be calculated by several tools such as EdgeR (Robinson, McCarthy,

& Smyth, 2010) or Cufflinks (Trapnell et al., 2012). Alternatively, RPKM

can be calculated simply by (1) counting the total number of reads in a sample

divided by 1million to give the “per million scaling factor” (PMSF), (2) divid-

ing the number of reads aligned to a gene by the PMSF, and dividing

that by the length of the gene in kilobases. A slightly updated metric is

FPKM that looks at the number of fragments (the number of paired or

individual reads that aligned). For single-end reads, FPKM equals RPKM.

Finally, the transcripts per kilobase million (TPM) normalizes for the gene

length first (rather than the scaling factor) and provides a relative abundance

of transcripts. FPKM and RPKM can be further normalized using the

trimmed mean of M-values (TMM) (Robinson & Oshlack, 2010), which

includes additional scaling factors on the upper and lower expression values

of the data, as is implemented in tools such as EdgeR (Robinson et al.,

2010). Although each of these expression value metrics is designed to nor-

malize RNAseq across samples or datasets, each may ultimately have a bias

for longer or small gene families, library preparation or GC content, which

should be identified during an analysis of differential expression.

Gene expression values (i.e., TMM, TPKM, or TPM) across multiple

isolates or experiments are usually compared during differential expression

analysis, which can require up to 12 biological replicates for the greatest

accuracy rates (Schurch et al., 2016), although in practice usually only three

are generated due to cost. Tools such as EdgeR (Robinson et al., 2010) and
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Deseq2 (Love, Huber, & Anders, 2014) identify differentially expressed

transcripts based on a generalized linear model for each gene assuming a

negative binomial distribution and includes several other steps to eliminate

bias in long genes or minimize “noisy” expression data. Other tools include

DEGseq (Wang, Feng, Wang, Wang, & Zhang, 2010) which is also an

R bioconductor package and assumes a poisson model which is approp-

riate for technical replicates but may overestimate expression differences

between conditions. MMseq (multimapping RNA-seq analysis) (Turro,

Astle, & Tavar�e, 2014) to detect allele or isoform-specific expression and

Cuffdiff (Cufflinks’ method for estimating differential expression)

(Trapnell et al., 2012) using quartile-based normalization are additional tools

that may provide comparable or better results, and LOX to examine dif-

ferential expression across multiple experiments, time points, or treatments

(Zhang, López-Giráldez, & Townsend, 2010). Ultimately, studies usually

have a defined cutoff, e.g., log fold changes between conditions, and/or

FDR rates to identify genes that are changing most rapidly. Plots such as

Volcano and MA plots can show the distribution of expression values for

all genes, and those that are considered differentially expressed, thereby

highlighting biases of those methods, e.g., bias of low average counts of

reads/transcripts per million.

Numerous examples of differential expression have been discussed in the

previous chapter, such as the secreted clade of G2M36 genes (n¼57) unique

to B. salamandrivorans, which are mostly upregulated in salamander skin

(Farrer et al., 2017). Notably, the study also generated a transcriptome of

theWenxian knobby newt (T. wenxianensis) to identify host genes that were

differentially expressed during infection. Emerging fungal diseases are often

nonmodel organisms, as is the case for B. salamandrivorans, and will them-

selves infect nonmodel organism hosts. To effectively study the genomics

and epigenomics of these diseases, and their effect on the host, it is essential

to move away frommodel-based systems and generate resources such as draft

genome assemblies and gene sets for the growing repertoire of EFP’s and

their hosts.

The associations of mutations and changes in fitness, as well as transcrip-

tional regulation, during pathogenicity are beginning to be characterized

within a multitude of eukaryotic pathogens, e.g., Cryptococcus (Magditch,

Liu, Xue, & Idnurm, 2012; Panepinto & Williamson, 2006). However,

the modifications of both DNA and histones that play a key role in transcrip-

tional regulation are to date largely uncharacterized in EFPs. In eukaryotes,

histones assemble into octomers called nucleosomes, which wrap around
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approximately 147 base pairs of DNA (Stroud et al., 2012). While the posi-

tion of each histone can be mapped independently by ChIP-seq, including

variants of each type, a single type may be used as a proxy for nucleosome

positions. Variation in histone-binding sites is found between isolates of fun-

gal pathogens, as well as varying upon condition such as C. albicans during

heat shock (Leach et al., 2016). Furthermore, nucleosome levels in

C. albicans decrease near to the transcription factor-binding sites of key path-

ogenicity genes, allowing activation by transcription factors and RNA poly-

merase (Leach et al., 2016).

Histones undergo posttranslational modifications on their N-terminal

tails that alter their interactions with the DNA and other proteins that

they bind. Modifications can be made to any of the four types of histones

at several amino acid sites and can include acetylation, phosphorylation,

methylation, deamination/citrullination (arginine ➔citrulline), β-N-

acetylglucosamination, ADP ribosylation, ubiquitination and small

ubiquitin-like modifier (SUMO)-lyation, tail-clipping, and proline isomer-

ization (Bannister & Kouzarides, 2011). These modifications ultimately alter

the chromatin structure, which can manifest into changes in transcription,

repair, replication, and recombination. For example, acetylation of lysine

residues on H3 and H4 by protein complexes involving histone

acetyltransferases (HATs) is associated with active transcription for several

fungal pathogens (Jeon, Kwon, & Lee, 2014). Notably, the Rtt109 HAT

is responsible for acetylation of H3K56 and contributes to pathogenicity

of C. albicans in mouse macrophages (Lopes da Rosa, Boyartchuk,

Zhu, & Kaufman, 2010). Another family of HATs are the Gcn5-related

N-acetyltransferases (GNAT), including the GCN5 protein implicated

in C. neoformans growth rates at high temperatures, capsule attachment,

and tolerance of oxidative stress (O’Meara, Hay, Price, Giles, &

Alspaugh, 2010).

DNA methylation is another important mechanism for epigenetic

changes regulating gene expression and transposon silencing (Lister et al.,

2009).Whole-genome bisulfite sequencing and methylated DNA immuno-

precipitation are methods to profile the methylation of cytosine (carbon 5)

to 5-methylcytosine (5-meC) in eukaryotes, generally within cytosine-rich

genomic islands (CpG, CpHpG, and CpHpH) (Lou et al., 2014). DNA

methylation is achieved via a number of DNA methyltransferase

(DNMT), dependent on the species, resulting in 5-meC that can be herita-

ble (e.g., via DNMT1 and UHRF1) (Law & Jacobsen, 2010). 5-meC is

widespread in bacteria, plants, and mammalian cells, but differentially
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conserved across the fungal kingdom. Notably, 5-meC appears to be absent

in a number of fungal genera including Saccharomyces and Pichia (Capuano,

M€ulleder, Kok, Blom, & Ralser, 2014). However, in Neurospora 5-meC

within CpG islands is located in ex-transposons targeted by RIP mutations,

where its presence is dependent on a single DNMT named DIM-2, directed

by a histone H3 methyltransferase (Selker et al., 2003).

In C. neoformans isolate H99, Huff et al. have identified DNMT5 as a

CG-specific DNMT and show that knockouts appear to completely remove

5-meC (Huff & Zilberman, 2014, p. 1). Separately, DNMT5 has been

implicated in infection in mice (Liu et al., 2008), where knockouts show

significantly reduced virulence. 5-meC inCryptococcus is primarily associated

with transposable elements, and the methylation directly disfavors nucleo-

some binding (Huff & Zilberman, 2014, p. 1) (determined using micrococ-

cal nuclease (MNase) to digest chromatin followed by sequencing). Huff

et al. show that 5-meC is negatively associated with nucleosome positions,

but it remains to be shown how the patterns and associations with nucleo-

somes varies between isolates or during infection, and as suggested by Liu

et al., it may reveal insights into the mechanisms of infection (Liu

et al., 2008).

Epigenomics in fungal pathology remains an active of area of research

that compliments the larger field of genomics (i.e., DNAseq) in identifying

new genotypic features of EFPs and particularly dynamic changes associated

with virulence traits. However, since most fungal pathogens remain

unculturable, and some (such as Microsporidia) are obligate intracellular

pathogens—obtaining high quality and sufficient depth of coverage for

RNAseq, let alone ChIPseq or Methylseq remains an obstacle. An increase

in sampling across fungal pathogens and their nonpathogenic relatives, espe-

cially for generating new high-quality genomes for comparison, but also

transcriptomics is likely to improve our understanding of fungal pathogen-

esis. Sampling nonpathogenic relatives will require a move away from focus-

ing solely on outbreak strains, and also looking for fungal relatives in host

populations that are not experiencing population declines may yield

novel-related isolates. The field of metagenomics also promises to identify

new locations and relatives for EFPs.

ncRNA such as miRNA and siRNA of the RNAi pathways are prom-

inent epigenetic components found throughout the fungal kingdom, where

they function to silence or downregulate gene expression via complimentary

sequences to mRNA targets (Pasquinelli, 2012) or gene promoters (Chu,

Kalantari, Dodd, & Corey, 2012). RNAi is achieved via either microRNA
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(miRNA) derived from single-stranded RNA transcripts that fold to form

�70nt hairpins, or small interfering RNAs (siRNAs; short interfering

RNA; silencing RNA) that derive from longer regions of double-stranded

RNA. siRNA ultimately cleaves sequence-specific mRNAs, compared

with miRNA that has reduced specificity and therefore may target a wider

range of mRNAs (Lam, Chow, Zhang, & Leung, 2015). Both miRNA and

siRNA are cleaved by the RNase III endoribonuclease Dicer (Dicer-1 and

Dicer-2, respectively) prior to being incorporated into either the cytoplas-

mic RNA-induced silencing complex (RISC) or the nuclear RNA-induced

transcriptional silencing (RITS) complex, where the RNA (guide strand)

binds target mRNA (such as miRNA response elements; MRE; found in

30 UTRs), which is cleaved by the PIWI domain of a catalytic Argonaute

protein (a major component of both the RISC and RITS) thereby causing

degradation of the transcript. Another category of RNA silencing molecules

is the Dicer-independent PIWI-associated/interacting RNAs (piRNAs),

some of which are classified as repeat-associated small interfering RNA

(rasiRNA)—however, both sets are thought to be absent in the fungal

kingdom.

RNAi silencing machinery (in contrast to piRNA and rasiRNA) is

prominent throughout the fungal kingdom, especially filamentous fungi,

although is lost sporadically in some species of both yeasts and filamentous

fungi (Dang, Yang, Xue, & Liu, 2011). Excitingly, exogenous/artificial (in

addition to endogenous) miRNA and siRNA derived from double-stranded

RNA or hairpin RNA with complementary sequence to target gene pro-

moters (Chu et al., 2012) or mRNA targets (Pasquinelli, 2012) are being

increasingly used for therapeutics against fungi that cause disease in plants

(Duan, Wang, & Guo, 2012) and humans (Khatri & Rajam, 2007). For

example, a synthetic 23-nucleotide siRNA was designed with complemen-

tary base pairs to the sequence of a key polyamine biosynthesis gene (orni-

thine decarboxylase) inA. nidulans required for normal growth, resulting in a

reduction in mycelial growth, target mRNA titers, and cellular polyamine

concentrations (Khatri & Rajam, 2007). Despite their important role in

endogenous gene control (especially transposons), and their potential

therapeutic role, endogenous miRNAs and siRNAs (and their respective

targets) are not routinely predicted from the genome sequence, despite var-

ious in silico strategies existing (i.e., Bengert & Dandekar, 2005). Currently,

the extent that RNAi has a role on gene regulation inmany fungal pathogens

including EFPs is unclear. However, as described later, the study of RNAi is

a rapidly emerging field that holds great promise not only as a tool for
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understanding fungal virulence but also as a novel approach to disrupt fungal

pathogenicity.

RNAi has been shown in numerous biological roles across the fungal

kingdom. For example, N. crassa can initiate potent RNAi-mediated gene

silencing to defend against viral and transposon invasion (Dang et al., 2011).

Other functions of RNAi include sex-induced silencing in C. neoformans,

which is mediated by RNAi via sequence-specific small RNAs (Wang,

Hsueh, et al., 2010). Interestingly, one lineage of the related C. gattii

(VGII) is missing PAZ, Piwi, and DUF1785 domains, all of which are com-

ponents of the RNAi machinery. This loss of RNAi has been hypothesized

to contribute to increased genome plasticity in this lineage that may have

contributed to specific hypervirulent traits in VGII (D’Souza et al., 2011;

Farrer et al., 2015; Wang, Hsueh, et al., 2010).

The discovery that communication between host and pathogen can

occur through the transfer of extracellular microvesicles (ExMVs) has

opened a new research field into the horizontal transfer of bioactive mole-

cules in cell-to-cell communication (Ratajczak & Ratajczak, 2016). It has

now been well documented that horizontal transfer of miRNAs occurs

between fungal and host cells occurs via the action of ExMVs, that this trans-

fer is bidirectional, and that the transfer of miRNAs can result in RNAi that

induces host susceptibility to a pathogen (Wang et al., 2016). RNAi that is

mediated via such “cross-kingdom” transfer of ExMVs has been show to

occur in the aggressive pathogenic fungus Blumeria cinerea, where selective

silencing of host plant immune genes occurs by the introduction of miRNA

virulence effectors (Weiberg et al., 2013). The characterization of miRNAs

in EFPs using high-throughput RNA sequencing approaches followed by

identification of matching host sequences therefore offers an opportunity

to identify potential RNA-based virulence effectors. Moreover, the recog-

nition that virulence can be mediated epigenomically has opened up new

opportunities to control fungal diseases using nonfungicide means. For

instance, recent work has shown that in B. cinerea, the majority of miRNA

effectors are derived from retrotransposon LTRswhich, whenmiRNA pro-

duction is knocked-down through deletion of the key component of the

B. cinerea RNAi pathway Dicer, that virulence is abrogated in planta

(Wang et al., 2016). This seminal result was then extended to show that

engineering the host plant, in this case Arabidopsis, to express the anti-Dicer

RNAi conferred resistance against B. cinerea demonstrating that host-

induced gene silencing of the pathogen occurs. Finally, it was then demon-

strated that the simple application of synthetic environmental anti-Dicer

RNAi to the fungus, while in the act of infecting the host, resulted in
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the attenuation of virulence as the fungus took up the RNAi constructs via

ExMVs. Studies such as these showing that pathogenic fungi can be epi-

genomically silenced through nonfungicide-based means, and by the simple

application of a nontoxic and highly specific RNAi construct, are clearly a

disruptive approach that has broad applicability to a broad span of the non-

model EFPs that we have discussing here and shows much promise.

4. CONCLUDING REMARKS

Presently, phylogenomic, comparative genomic, and epigenomic

methods are becoming the modus operandi for detection and characterization

of virulence determinants and epidemiological parameters among EFPs

(Hasman et al., 2014; Lecuit & Eloit, 2014), which are themselves increas-

ingly taking center stage for contemporaneous epidemics of plants, humans,

and other animals (Fisher et al., 2016). Testaments to the success of this

approach are the many examples of traits underpinning EFP that have been

identified using these methods. While the full scope and potential of these

experimental techniques and resulting compendiums of data are being real-

ized, many challenges remain. Importantly, the continuing adoption of best

practices, repeatable protocols, standardizations, and data storage need to be

developed to guide future studies working with these new data types and

developing powerful new experimental designs. The rapidity of disease out-

breaks far outpaces current systems for genomic/epigenomic data acquisi-

tion and distribution. Expeditious evaluation and disease mitigation

require collaborative research groups that can contribute and coordinate

the varied expertise and skills that are needed to tackle new outbreaks. Given

the pace and scope of genomics and epigenomic techniques, these fields will

likely continue to shape our understanding of pathogen evolution and pro-

vide additional approaches to combatting the increasing threat that EFPs

pose to biodiversity and ecosystem health.
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